MATH 2030 – MIDTERM II

Fall 2014

Name: SOLUTION	ame: SOLUTIONS		
Signature:		1	
SECTION (circle one):	02 (Erey	MWF 8:35-9:25)	
	01 (Brown	MWF 9·35-10·25)	

NOTES:

1. Please complete all problems.

2. Use the backs of pages for rough work if necessary.

3. Only what is written in non-erasable ink can be REGRADED.

4. If your work continues on another page (or the back of a page, please indicate this clearly).

5. Show your work.

6. Please place a box around your final answer where appropriate.

Question	Out of	Mark
1	10	
2	10	
3	15	
4	10	
5	5	
Total	50	

I. [10 marks] Fill in the blanks:
(a) A square matrix with all entries above the main diagonal being 0 is said to be
in lower triangular form.
(b) The determinant of a square matrix that is not invertible is
(c) The linear system $Ax = b$ where $b = 0$ is said to be homogonlows.
(d) Suppose that A is a square matrix with det $A = -2$, and A' is formed from A by
first interchanging two columns of A and then multiplying a row by 3. Then
$\det A' = \underline{6}.$
(e) For a square matrix A the characteristic polynomial of A
$\frac{\det(A-\lambda I)}{1}$
(f) If every vector in a subspace S can be written as a linear combinations of vectors
in a subset T of S , then we say that T S S .
(g) If the only way to write $\bf 0$ as a linear combination of vectors ${\bf v}_1, {\bf v}_2,, {\bf v}_n$ is with
all scalars being 0, then the set $\{v_1, v_2,, v_n\}$ is said to
be <u>linearly independent</u> .
(h) A line in \mathbb{R}^3 is a subspace of \mathbb{R}^3 if and only if it passes through the point
(0,0,0)
(i) Is the set $S = \{(a,b): \text{ at least one of } a \text{ and } b \text{ are } 0\}$ a subspace of \mathbb{R}^2 ? Answer yes
or no. no
(j) Is the set $S = \{(-a,a) : a \in \mathbb{R}\}$ a subspace of \mathbb{R}^2 ? Answer yes or no. <u>yes</u>

2. [10 marks]

$$Let A = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 2 \end{bmatrix}.$$

(a) Find the inverse of A.

(b) Find the determinant of A.

$$\left(\begin{array}{c|cccc}
1000 & 0100 \\
0100 & 2-20-1 \\
000 & 10 & 2111 \\
\hline
000 & 1110 \\
\end{array}\right)$$

3. [15 marks] Find the eigenvalues and the eigenvectors of the following matrix:

$$A = \begin{bmatrix} -1 & 2 & 0 \\ 2 & -1 & 0 \\ 0 & 0 & -3 \end{bmatrix}$$

$$A = \begin{bmatrix} -1 & 2 & 0 \\ 2 & -1 & \lambda & 0 \\ 0 & 0 & -3 & \lambda \end{bmatrix} = 0$$

$$A = \begin{bmatrix} -1 & 2 & 0 \\ 2 & -1 & \lambda & 0 \\ 0 & 0 & -3 & \lambda \end{bmatrix} = 0$$

$$A = \begin{bmatrix} -1 & 2 & 0 \\ 2 & -1 & \lambda & 0 \\ 0 & 0 & -3 & \lambda \end{bmatrix} = 0$$

$$A = \begin{bmatrix} -1 & 2 & 0 \\ 2 & -1 & \lambda & 0 \\ 0 & 0 & -3 & \lambda \end{bmatrix} = 0$$

$$A = \begin{bmatrix} -1 & 2 & 0 \\ 2 & -1 & \lambda & 0 \\ 2 & -1 & \lambda & 0 \\ 2 & -1 & \lambda & 1 \end{bmatrix} = 0$$

$$A = \begin{bmatrix} -1 & 2 & 0 \\ 2 & -1 & \lambda & 0 \\ 2 & -1 & \lambda & 1 \\ 2 & -1 & \lambda & 1 \end{bmatrix} = 0$$

$$A = \begin{bmatrix} -1 & 2 & 0 \\ 2 & -1 & \lambda & 0 \\ 2 & -1 & \lambda & 1 \\ 2 & -1 & \lambda & 1 \end{bmatrix} = 0$$

$$A = \begin{bmatrix} -1 & 2 & 0 \\ 2 & -1 & \lambda & 0 \\ 2 & -1 & \lambda & 1 \\ 2 & -1 & \lambda & 1 \end{bmatrix} = 0$$

$$A = \begin{bmatrix} -1 & 2 & 0 \\ 2 & -1 & \lambda & 0 \\ 2 & -1 & \lambda & 1 \\ 2 & -1 & \lambda & 1 \end{bmatrix} = 0$$

$$A = \begin{bmatrix} -1 & 2 & 0 \\ 2 & -1 & \lambda & 0 \\ 2 & -1 & \lambda & 1 \\ 2 & -1 & \lambda & 1 \end{bmatrix} = 0$$

$$A = \begin{bmatrix} -1 & 2 & 0 \\ 2 & -1 & \lambda & 0 \\ 2 & -1 & \lambda & 1 \\ 2 & -1 & \lambda & 1 \end{bmatrix} = 0$$

$$A = \begin{bmatrix} -1 & 2 & 0 \\ 2 & -1 & \lambda & 0 \\ 2 & -1 & \lambda & 1 \\ 2 & -1 & \lambda & 1 \end{bmatrix} = 0$$

$$A = \begin{bmatrix} -1 & 2 & 0 \\ 2 & -1 & \lambda & 1 \\ 2 & -1 & \lambda & 1 \end{bmatrix} = 0$$

$$A = \begin{bmatrix} -1 & 2 & 0 \\ 2 & -1 & \lambda & 1 \\ 2 & -1 & \lambda & 1 \end{bmatrix} = 0$$

$$A = \begin{bmatrix} -1 & 2 & 0 \\ 2 & -1 & \lambda & 1 \\ 2 & -1 & \lambda & 1 \end{bmatrix} = 0$$

$$A = \begin{bmatrix} -1 & 2 & 0 \\ 2 & -1 & \lambda & 1 \\ 2 & -1 & \lambda & 1 \end{bmatrix} = 0$$

$$A = \begin{bmatrix} -1 & 2 & 0 \\ 2 & -1 & \lambda & 1 \\ 2 & -1 & \lambda & 1 \end{bmatrix} = 0$$

$$A = \begin{bmatrix} -1 & 2 & 0 \\ 2 & -1 & \lambda & 1 \\ 2 & -1 & \lambda & 1 \end{bmatrix} = 0$$

$$A = \begin{bmatrix} -1 & 2 & 0 \\ 2 & -1 & \lambda & 1 \\ 2 & -1 & \lambda & 1 \end{bmatrix} = 0$$

$$A = \begin{bmatrix} -1 & 2 & 0 \\ 2 & -1 & \lambda & 1 \\ 2 & -1 & \lambda & 1 \end{bmatrix} = 0$$

$$A = \begin{bmatrix} -1 & 2 & 0 \\ 2 & -1 & \lambda & 1 \\ 2 & -1 & \lambda & 1 \end{bmatrix} = 0$$

$$A = \begin{bmatrix} -1 & 2 & 0 \\ 2 & -1 & \lambda & 1 \\ 2 & -1 & \lambda & 1 \end{bmatrix} = 0$$

$$A = \begin{bmatrix} -1 & 2 & 0 \\ 2 & -1 & \lambda & 1 \\ 2 & -1 & \lambda & 1 \end{bmatrix} = 0$$

$$A = \begin{bmatrix} -1 & 2 & 0 \\ 2 & -1 & \lambda & 1 \\ 2 & -1 & \lambda & 1 \end{bmatrix} = 0$$

$$A = \begin{bmatrix} -1 & 2 & 0 \\ 2 & -1 & \lambda & 1 \\ 2 & -1 & \lambda & 1 \end{bmatrix} = 0$$

$$A = \begin{bmatrix} -1 & 2 & 0 \\ 2 & -1 & \lambda & 1 \\ 2 & -1 & \lambda & 1 \end{bmatrix} = 0$$

$$A = \begin{bmatrix} -1 & 2 & 0 \\ 2 & -1 & \lambda & 1 \\ 2 & -1 & \lambda & 1 \end{bmatrix} = 0$$

$$A = \begin{bmatrix} -1 & 2 & 0 \\ 2 & -1 & \lambda & 1 \\ 2 & -1 & \lambda & 1 \end{bmatrix} = 0$$

$$A = \begin{bmatrix} -1 & 2 & 0 \\ 2 & -1 & \lambda & 1 \\ 2 & -1 & \lambda & 1 \end{bmatrix} = 0$$

$$A = \begin{bmatrix} -1 & 2 & 0 \\ 2 & -1 & \lambda & 1 \\ 2 & -1 & \lambda & 1 \end{bmatrix} = 0$$

$$A = \begin{bmatrix} -1 & 2 & 0 \\ 2 & -1 & \lambda & 1 \\ 2 & -1 & \lambda & 1 \end{bmatrix} = 0$$

$$A = \begin{bmatrix} -1 & 2 & 0 \\ 2 & -1 & \lambda &$$

the eigenvectors with eigenvalue 1 are (5,5,0) where sell, sto.

4. [10 marks]

(a) Is $\{(1,0,2,-1),(1,3,-1,2),(2,-3,7,-5)\}$ linearly independent? Explain your answer.

(b) Express (2,-1,3) as a linear combination of (1,-1,0), (1,1,1) and (1,0,1).

$$(2,-1,3) = a(1,-1,0) + b(1,1,1) + c(1,0,1)$$

$$0 + 4 + c = 2$$
 $-9 + 4 = -1$
 $0 + c = 3$

$$\begin{bmatrix} 1 & 1 & 1 & 2 \\ -1 & 1 & 0 & -1 \\ 0 & 1 & 1 & 3 \end{bmatrix}$$

5. [5 marks] Let A be an $n \times n$ matrix. Suppose that for some positive integer k, A^k is the $n \times n$ zero matrix. Show that A is not invertible.