Moduli spaces of curves via Schottky spaces over ${\bf Z}$

Daniele Turchetti

Université de Caen Normandie

GAeL XXVI June 22, 2018

2 Berkovich spaces over Z

3 Schottky space and universal Mumford curve over Z

2 Berkovich spaces over Z

3 Schottky space and universal Mumford curve over Z

Schottky uniformization

Let X^{an}/\mathbf{C} be a compact Riemann surface of genus g.

Theorem (Koebe Rückkehrschnitt theorem)

There exist $\Omega \subset \mathbf{P}_{\mathbf{C}}^{1,\mathrm{an}}$ open dense subset, and $\Gamma \subset \mathrm{PGL}_2(\mathbf{C})$ a free group of rank g such that $\Omega/\Gamma \cong X^{an}$.

Schottky uniformization

Let X^{an}/\mathbf{C} be a compact Riemann surface of genus g.

Theorem (Koebe Rückkehrschnitt theorem)

There exist $\Omega \subset \mathbf{P}_{\mathbf{C}}^{1,\mathrm{an}}$ open dense subset, and $\Gamma \subset \mathrm{PGL}_2(\mathbf{C})$ a free group of rank g such that $\Omega/\Gamma \cong X^{an}$.

Let K be a complete non-archimedean valued field, and X/K a smooth projective curve of genus g with **split degenerate reduction** (i.e. all components of the stable reduction of $X_{\overline{K}}$ are \mathbf{P}^1).

Theorem (Mumford)

There exist $\Omega \subset \mathbf{P}_{K}^{1,\mathrm{an}}$ open dense subset, and $\Gamma \subset \mathrm{PGL}_{2}(K)$ a free group of rank g such that $\Omega/\Gamma \cong X^{\mathrm{an}}$.

Berkovich's $\mathbf{P}_{K}^{1,\mathrm{an}}$

$\mathbf{P}_{K}^{1,\mathrm{an}} = \{x: K[T] \rightarrow \mathbf{R}_{\geq 0} \text{ multiplicative semi-norm}: x_{|K} = |\cdot|_{K}\} \cup \{\infty\}$

Example

$\mathbf{C}_{p}^{1,\mathrm{an}}, p \neq 2, 3:$
[∞]
η_{Gauss}
$p-1$ $\eta_{2, p }$ $2+p$
$\frac{\eta}{(type(4))} \xrightarrow{\eta_{0, p }} \eta_{2, p^2 } \xrightarrow{2} 2^{+p^2}$
$\frac{q_p p^{3 }}{p}p+p^{3}$
2p 0

Berkovich's Tate curve

Let
$$\lambda \in \mathcal{K}$$
, $\mathcal{A}_{\lambda} = \mathcal{K}[X,Y]/Y^2 - X(X-1)(X-\lambda)$, $\mathcal{E}_{\lambda} := \mathsf{Spec}(\mathcal{A}_{\lambda})$

 $E_{\lambda}{}^{an} = \{ x : A_{\lambda} \to \mathbf{R}_{\geq 0} \text{ multiplicative semi-norm} : x_{|\mathcal{K}} = |\cdot|_{\mathcal{K}} \} \cup \{ \infty \}$

Example

If $0 < |\lambda| < 1$, E_{λ}^{an} looks like:

Schottky groups

Let $(k, |\cdot|)$ be a complete valued field. We denote by $\mathbf{P}_k^{1,\mathrm{an}}$

- the Berkovich projective line if k is non-archimedean;
- $\mathbf{P}^1_{\mathbf{C}}$ if $k = \mathbf{C}$;
- $\mathbf{P}^1_{\mathbf{C}}/\mathrm{Gal}(\mathbf{C}/\mathbf{R})$ if $k = \mathbf{R}$.

Let Γ be a subgroup of $PGL_2(k)$. It acts on $\mathbf{P}_k^{1,an}$.

Schottky groups

Let $(k, |\cdot|)$ be a complete valued field. We denote by $\mathbf{P}_k^{1,\mathrm{an}}$

- the Berkovich projective line if k is non-archimedean;
- **P**¹_{**C**} if *k* = **C**;
- $\mathbf{P}^1_{\mathbf{C}}/\mathrm{Gal}(\mathbf{C}/\mathbf{R})$ if $k = \mathbf{R}$.

Let Γ be a subgroup of $PGL_2(k)$. It acts on $\mathbf{P}_k^{1,an}$.

We say that Γ acts discontinuously at $x \in \mathbf{P}_k^{1,\mathrm{an}}$ if there exists a neighborhood U_x of x such that

$$\{\gamma \in \Gamma \mid \gamma(U_x) \cap U_x \neq \emptyset\}$$
 is finite.

Schottky groups

Let $(k, |\cdot|)$ be a complete valued field. We denote by $\mathbf{P}_k^{1,\mathrm{an}}$

- the Berkovich projective line if k is non-archimedean;
- P^1_C if k = C;
- $\mathbf{P}^1_{\mathbf{C}}/\mathrm{Gal}(\mathbf{C}/\mathbf{R})$ if $k = \mathbf{R}$.

Let Γ be a subgroup of $PGL_2(k)$. It acts on $\mathbf{P}_k^{1,an}$.

We say that Γ acts discontinuously at $x \in \mathbf{P}_{k}^{1,\mathrm{an}}$ if there exists a neighborhood U_{x} of x such that

$$\{\gamma \in \Gamma \mid \gamma(U_x) \cap U_x \neq \emptyset\}$$
 is finite.

A Schottky group over k is a finitely generated free subgroup of $PGL_2(k)$ containing only hyperbolic elements and with a nonempty discontinuity locus. The complement \mathscr{L} of the discontinuity locus, called the limit set, is compact and contains only type 1 points.

3 Schottky space and universal Mumford curve over Z

Let $(A, \|\cdot\|)$ be a commutative Banach ring with unit. Let $n \in \mathbf{N}$.

The analytic space $\mathbf{A}_{A}^{n,\mathrm{an}}$ is the set of multiplicative semi-norms on $A[T_1, \ldots, T_n]$ bounded on A, *i.e.* maps

 $|.|: A[T_1,\ldots,T_n] \rightarrow \mathbf{R}_+$

such that

1
$$|0| = 0$$
 and $|1| = 1$;

- $\forall f, g \in A[T_1, ..., T_n], |fg| = |f||g|;$

The set $\mathbf{A}_{A}^{n,\mathrm{an}}$ is endowed with the coarsest topology such that, for any f in $A[T_1, \ldots, T_n]$, the evaluation function

$$\begin{array}{cccc} \mathbf{A}_{A}^{n,\mathrm{an}} & \to & \mathbf{R}_{+} \\ |.|_{x} & \mapsto & |f|_{x} \end{array}$$

is continuous.

The set $\mathbf{A}_{A}^{n,\mathrm{an}}$ is endowed with the coarsest topology such that, for any f in $A[T_1, \ldots, T_n]$, the evaluation function

$$\begin{array}{cccc} \mathbf{A}_{\mathcal{A}}^{n,\mathrm{an}} & \to & \mathbf{R}_{+} \\ |.|_{x} & \mapsto & |f|_{x} \end{array}$$

is continuous.

Theorem (Berkovich)

The space $\mathbf{A}_{A}^{n,\mathrm{an}}$ is Hausdorff and locally compact.

The structure sheaf on $\mathbf{A}_{\mathcal{A}}^{n,\mathrm{an}}$

To each $x \in \mathbf{A}_A^{n,\mathrm{an}}$, we associate a residue field

 $\mathscr{H}(x) :=$ completion of the fraction field of $A[T_1, \ldots, T_n]/\mathrm{Ker}(|\cdot|_x)$

and an evaluation map

$$\chi_x \colon A[T_1,\ldots,T_n] \to \mathscr{H}(x).$$

The structure sheaf on $\mathbf{A}_{A}^{n,\mathrm{an}}$

To each $x \in \mathbf{A}_A^{n,\mathrm{an}}$, we associate a residue field

 $\mathscr{H}(x):=$ completion of the fraction field of $A[T_1,\ldots,T_n]/\mathrm{Ker}(|\cdot|_x)$

and an evaluation map

$$\chi_{\mathsf{x}} \colon \mathcal{A}[T_1,\ldots,T_n] \to \mathscr{H}(\mathsf{x}).$$

For every open subset U of $\mathbf{A}_{A}^{n,\mathrm{an}}$, $\mathcal{O}(U)$ is the set of maps

$$f: U \to \bigsqcup_{x \in U} \mathscr{H}(x)$$

such that

- $\forall x \in U, f(x) \in \mathscr{H}(x);$
- f is locally a uniform limit of rational functions without poles.

Theorem (Lemanissier)

The space $\mathbf{A}_{\mathbf{Z}}^{n,\mathrm{an}}$ is locally path-connected.

Theorem (Poineau)

- For every × in A^{n,an}, the local ring O_x is henselian, noetherian, regular, excellent.
- The structure sheaf of $A_Z^{n,an}$ is coherent.

Theorem (Lemanissier - Poineau)

Relative closed and open discs over Z are Stein.

Uniformization of curves

2 Berkovich spaces over Z

3 Schottky space and universal Mumford curve over Z

To $\gamma \in \mathrm{PGL}_2(k)$ hyperbolic, we associate

- $\alpha \in \mathbf{P}^1(k)$ its attracting fixed point;
- $\alpha' \in \mathbf{P}^1(k)$ its repelling fixed point;
- $\beta \in k$ the quotient of its eigenvalues with absolute value < 1.

For $\alpha, \alpha', \beta \in k$ with $|\beta| \in (0, 1)$, we have

$$M(\alpha, \alpha', \beta) = \begin{pmatrix} \alpha - \beta \alpha' & (\beta - 1)\alpha \alpha' \\ 1 - \beta & \beta \alpha - \alpha' \end{pmatrix}.$$

Let $g \ge 2$. The Schottky space \mathscr{S}_g is the subset of $\mathbf{A}_{\mathbf{Z}}^{3g-3,\mathrm{an}}$ consisting of the points

$$z = (x_3, \ldots, x_g, x'_2, \ldots, x'_g, y_1, \ldots, y_g)$$

such that the subgroup of $\operatorname{PGL}_2(\mathscr{H}(z))$ defined by

$$\Gamma_z := \langle M(0, \infty, y_1), M(1, x'_2, y_2), M(x_3, x'_3, y_3), \dots, M(x_g, x'_g, y_g) \rangle$$

is Schottky.

Let $g \ge 2$. The Schottky space \mathscr{S}_g is the subset of $\mathbf{A}_{\mathbf{Z}}^{3g-3,\mathrm{an}}$ consisting of the points

$$z = (x_3, \ldots, x_g, x'_2, \ldots, x'_g, y_1, \ldots, y_g)$$

such that the subgroup of $\operatorname{PGL}_2(\mathscr{H}(z))$ defined by

$$\Gamma_z := \langle M(0,\infty,y_1), M(1,x_2',y_2), M(x_3,x_3',y_3), \dots, M(x_g,x_g',y_g) \rangle$$

is Schottky.

Theorem (Poineau - T.)

The Schottky space \mathscr{S}_g is a connected open subset of $A_Z^{3g-3,\mathrm{an}}$.

Universal Mumford curve

Denote by $(X_3, \ldots, X_g, X'_2, \ldots, X'_g, Y_1, \ldots, Y_g)$ the coordinates on $\mathbf{A}_{\mathbf{Z}}^{3g-3,\mathrm{an}}$ and consider the subgroup of $\mathrm{PGL}_2(\mathscr{O}(\mathscr{S}_g))$: $\Gamma = \langle M(0, \infty, Y_1), M(1, X'_2, Y_2), M(X_3, X'_3, Y_3), \ldots, M(X_g, X'_g, Y_g) \rangle.$

Theorem (Poineau - T.)

There exists a closed subset \mathscr{L} of $\mathbf{P}_{\mathscr{I}_{\pi}}^{1,\mathrm{an}} := \mathscr{I}_{g} \times_{\mathcal{M}(\mathbf{Z})} \mathbf{P}_{\mathbf{Z}}^{1,\mathrm{an}}$ such that

• for each $z \in \mathscr{S}_g$, $\mathscr{L} \cap \operatorname{pr}_1^{-1}(z)$ is the limit set of Γ_z ;

Connections with \mathcal{M}_g and $\mathcal{M}_g^{\mathrm{trop}}$

The Schottky space \mathscr{S}_g and the universal Mumford curve \mathscr{X}_g fit in a commutative diagram:

Connections with \mathcal{M}_g and $\mathcal{M}_g^{\mathrm{trop}}$

The Schottky space \mathscr{S}_g and the universal Mumford curve \mathscr{X}_g fit in a commutative diagram:

Theorem (Poineau - T.)

The topological space $M_g^{\mathrm{trop}} := \sqcup \mathbf{R}_{>0}^{E(G)}$ can be embedded into \mathscr{S}_g . Moreover, there exists an open subset $\mathscr{B}_g \subset \mathscr{S}_g$ and a deformation retraction of \mathscr{B}_g to M_g^{trop} .

What's next?

- Homotopy type of S_g Teichmüller space over Z (cf. Culler-Vogtmann "Outer space")
- Steinness of \mathscr{S}_g
- Periods $(q_{i,j})_{1 \leqslant i,j \leqslant g}$ and Jacobians (Manin-Drinfeld, Myers)
- q-expansions of modular forms (Ichikawa)
 Schottky problem (= characterize the Torelli locus inside A_g)
- Gauß-Manin connections Picard-Fuchs equations (Gerritzen):

for
$$1 \leqslant i \leqslant g$$
,
$$\begin{cases} \nabla\left(\frac{du_i}{u_i}\right) = \sum_{j=1}^g \beta_j \otimes \frac{dq_{i,j}}{q_{i,j}}; \\ \nabla(\beta_i) = 0. \end{cases}$$