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Recall the (Euler) hypergeometric series:

3, b — (a)"(b)n n
2f1 x| = g x".
(C ) o (c)n(1)n
This defines a holomorphic function in D(0,1) C C.
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The Hypergeometric Series

Recall the (Euler) hypergeometric series:
a, b > (a)n(b)s
2F1 ( ' ) = 7Xn.
;O (€)n(1)n
This defines a holomorphic function in D(0,1) C C.

It is a solution of the hypergeometric equation

2
E(a,b,c): (1—x)%+[c—(a+b+1)x]——aby—O

which is a linear homogeneous ODE with regular singularities at 0, 1, co.



The Hypergeometric Series

Recall the (Euler) hypergeometric series:
a, b > (a)n(b)s
2F1 ( ' ) = 7Xn.
;O (€)n(1)n
This defines a holomorphic function in D(0,1) C C.

It is a solution of the hypergeometric equation

2
E(a,b,c): (1—x)%+[c—(a+b+1)x]——aby—O

which is a linear homogeneous ODE with regular singularities at 0, 1, co.

Fact

Every second-order ODE with three regular singularities can be
transformed into a hypergeometric one.




The space of solutions of E(a, b, c) around a point xo € C— {0,1} is a
2-dimensional vector space over C. Any such solution can be analytically
continued along every path v in C — {0,1}.
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Monodromy of ODE with regular singular points

The space of solutions of E(a, b, ¢) around a point x € C — {0,1} is a
2-dimensional vector space over C. Any such solution can be analytically
continued along every path v in C — {0,1}.

Let v be a loop starting and ending in xg, and y1, y» two linearly
independent solutions of E(a, b, c) around xg. We have:

T\ o (1)
VY2 T\
The correspondence v — M, realizes a group representation

p:m(C—{0,1},x) — GLy(C)

called monodromy representation. It is uniquely associated with
E(a, b, c) up to conjugation in GLy(C).



Monodromy of ODE with regular singular points

The space of solutions of E(a, b, ¢) around a point x € C — {0,1} is a
2-dimensional vector space over C. Any such solution can be analytically
continued along every path v in C — {0,1}.

Let v be a loop starting and ending in xg, and y1, y» two linearly
independent solutions of E(a, b, c) around xg. We have:

T\ o (1)
VY2 T\
The correspondence v — M, realizes a group representation

p:m(C—{0,1},x) — GLy(C)

called monodromy representation. It is uniquely associated with
E(a, b, c) up to conjugation in GLy(C).

The (conjugacy class of) p(71(C — {0,1},xp)) is the monodromy group
of E(a, b, c).



Another solution of E(a, b, ¢)

Let D be the differential operator y +— x(‘%’(.
Then E(a, b, c) is

1
[(a+D)b+D)—(c+D)(1+ D);]y =0.
The equality of differential operators

Dx* = x°(s+ D)
yields

[(a+D)(b+D)—(c+D)(1+D)§]x1*C = XI*C[(a+1—c+D)(b+1—c+D)—(1+D)(2—c+D)§].

Then, x1=<,F; (2 +2 1_; ¢,b+1- < x) is a second solution of

E(a, b,c) when c ¢ N.



The hypergeometric equation
d2y

E(a, b,c): x(1—x)d >

dy
[c—(a+b+1)x]&—aby—0

for £ =1 — x becomes

§(1—§) +[a+b+1—c—(a+b+1)§)]g—§—aby=0.

de?
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The hypergeometric equation

2

E(a, b, c) : x(1 —x)d

2 +[c—(a+b+1)x]——aby 0

for £ =1 — x becomes

§(1 - )d§2 +[a+b+1—c—(a+b+1)§)]j—};—aby=0.

Hence it is hypergeometric, with solution 5 F; (a N bj—’ L. b; 1-— x).
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Solutions around 1

The hypergeometric equation

2

E(a,b,c): (1—x)%+[c—(a+b+ 1)x]——aby—0

for £ =1 — x becomes

d2
g(l—g)dgz/+[a+b+1—c—(a+b+1)§)]——aby—o
Hence it is h tric, with solution »F: N b_
ence It IS hypergeometric, Wi solution 211 a—|—b+1—c ) X ).

As before, another solution can be found:

_ yc—a—b c— a, c—b .
(1 X) 2F1<c+1—a—b ,1 X).

forc—a—b¢N



The hypergeometric equation

E(a,b,0):[(a + D)(b+ D) — (¢ + D)(1+ D) ]y =0
for & = % becomes

[(a = D)(b— D) - (c = D)(1 - D)¢]y = 0.
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The hypergeometric equation

E(a,b,0):[(a + D)(b+ D) — (¢ + D)(1+ D) ]y =0
for & = % becomes
[(a—D)(b—D)—(c—D)(1-D)]y =0.
We have

[(a—D)(b— D) — (c — D)(1 - D)€’
= (—a+ D)(—=b+ D)¢ — (—c + D)(—1+ D)e"*?

— &(1+a—c+D)at+D)—(1+D)a—b+1+ D)%].
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Solutions around oo

The hypergeometric equation

E(a,b,¢):[(a-+ D)(b+ D) — (c + D)(1 + D) ]y = 0
for & = % becomes

[(a— D)(b— D) —(c—D)(1—D)¢]y =0.
We have

[(a— D)(b— D) —(c — D)(1 - D)¢J¢’
= (—a+ D)(—=b+ D)¢ — (—c + D)(—1+ D)e"*?
1
21

= €L+ a4 D)(a+D) (14 D)(a~b+1+D)

Two solutions are:

2 a, l+a—c b b, 1+b—c
52Fl(aberl '£> and€2F1<bfa+1 £>

fora— b ¢ N.



Connnection matrices

We found six solutions of E(a, b, ¢):
@ fo1, fop continuation in C\ {(—o00,0] U [1,+00)} of the solutions
around 0
@ fi1, f12 continuation in C\ (—o0, 1] of the solutions around 1
® foo1, oo continuation in C\ [0, 4+00) of the solutions around oo

Suppose a, b, c € R. Then the solutions are real-valued over the real part
of their domains of definition.



Connnection matrices

We found six solutions of E(a, b, ¢):

@ fo1, fop continuation in C\ {(—o00,0] U [1,+00)} of the solutions
around 0

@ fi1, f12 continuation in C\ (—o0, 1] of the solutions around 1

® foo1, oo continuation in C\ [0, 4+00) of the solutions around oo

Suppose a, b, c € R. Then the solutions are real-valued over the real part
of their domains of definition.

In the domain H; = {x € C: Im(x) > 0}, these solutions lie in a
2-dimensional C-vector space. Hence there are matrices M1° and M0 in

GLy(C) such that
for 10 (ﬂl)
=M
(@2) + \fi2

for\ _ j000 f fool
() == ()

called connection matrices.



Define continuous maps f;:

fi(x) = [f1(x) : fia(x)] € PY(C) fori=0,1,00.
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Define continuous maps f;:

fi(x) = [f1(x) : fia(x)] € PY(C) fori=0,1,00.

e f((0,1)) = (£(0), fo(1))
o fi((1,00)) = ((1), fi(o0))
0 fio((—00,0)) = (foo(—00), £ (0))

and these are real intervals.
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Schwarz triangles

Define continuous maps f;:

fi(x) == [fa(x) : fia(x)] € PY(C) fori=0,1,00.

Note:
e £((0,1)) = (f(0), fo(1))
o f((1,00)) = (f(1), A(o0))
o fio((—00,0)) = (foo(—00), £c(0))

and these are real intervals.

In H, fo, f1, fo are related by linear fractional transformations (given by
the connection matrices), that send lines to circles and lines: the
boundary of f;(H,) is a “triangle with circular sides”, a.k.a. a Schwarz
triangle.



What happens when we extend solutions along paths? l
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What happens when we extend solutions along paths? I

Let's define H_ = {x € C: Im(x) < 0}.
The map fy can be extended to H_ through any of the three connected
components of R\ {0, 1}.
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Analytic continuation along paths

Question
What happens when we extend solutions along paths?

Let's define H_ = {x € C: Im(x) < 0}.

The map fy can be extended to H_ through any of the three connected
components of R\ {0,1}. The resulting image fo(H_) is found by
applying the following:

Theorem (Schwarz Reflection Principle)

Let f be a holomorphic function on H, U (a, b)) UH_, and let f((a, b))
be a circle C. Then, f(H_) =g (g o f(H,)) for any g € PGL,(C)
sending C into RU {oo}.

= f(H_) is the mirror image of f(IH) with respect to C.



Let v be a loop, starting at xp € H, going around 0.

The image fo(7y) is a path in P1(C), crossing the Schwarz triangles
f(Hy), f(H_) and a mirror image of f(H_).
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Analytic continuation along paths

Let v be a loop, starting at xo € H,, going around 0.

The image fy(7) is a path in P1(C), crossing the Schwarz triangles
f(Hy), f(H_) and a mirror image of f(H_).

The analytic continuation 7, fy is a fractional linear transformation: there

is M., — (i S) € PGL,(C) such that

af + b
cf +d

Yuf =



Analytic continuation along paths

Let v be a loop, starting at xo € H,, going around 0.

The image fy(7) is a path in P1(C), crossing the Schwarz triangles
f(Hy), f(H_) and a mirror image of f(H_).

The analytic continuation 7, fy is a fractional linear transformation: there

is M., — (i S) € PGL,(C) such that

af + b
cf +d

Yuf =

The assignment v — M, describes the projective monodromy
representation

ﬁ . 771(C — {0, 1},X0) — PGL2(C)



Let's compute the projective monodromy groups g(m1(C — {0,1}, xp)).
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Let's compute the projective monodromy groups g(m1(C — {0,1}, xp)).

The angles of the Schwarz triangle fo(H,.) are:
e |1 —c|m at “f(0)”
@ [c—a— b|m at “f(1)"
@ |a— b|m at “f(c0)”
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The projective monodromy

Let's compute the projective monodromy groups j(m1(C — {0,1}, x0)).

Theorem

The angles of the Schwarz triangle fo(H,.) are:
o |1 —c|m at “/(0)”
@ [c—a— blr at “fo(1)"
@ |a— b|m at “fo(oc0)”

Suppose that the angles are integral quotients of 7, and define
|1—c|:%, |c—a—b|:%, la—b| =2

We are in one of three cases:
+ + 1 > 1 (Spherical)

q
° % +o+ % =1 (Euclidean)
° % + % + 1 <1 (Hyperbolic)



Finite Schwarz triangles on a sphere = Projective monodromy is finite.
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Finite Schwarz triangles on a sphere = Projective monodromy is finite.

e p=2,q9=2 = Dihedral monodromy (D,,)
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Finite Schwarz triangles on a sphere = Projective monodromy is finite.

@ p=2,qg=2 = Dihedral monodromy (D5,)
@ p=2,g=23,r =3 = Tetrahedral monodromy (A;)

[3,3]

D3n 223 Td %332
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Finite Schwarz triangles on a sphere = Projective monodromy is finite.

@ p=2,qg=2 = Dihedral monodromy (D5,)
@ p=2,qg=23,r=3 = Tetrahedral monodromy (A,)
@ p=2,9g=3,r=4 = Octahedral monodromy (S;)

[3,3] [4,3]

o
D3n 223 Td %332 h *432
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Finite Schwarz triangles on a sphere = Projective monodromy is finite.

@ p=2,qg=2 = Dihedral monodromy (D5,)

@ p=2,qg=23,r=3 = Tetrahedral monodromy (A,)
e p=2,g=3,r =4 = Octahedral monodromy (S,)
@ p=2,g=3,r=5 = lcosahedral monodromy (As)

[3,3] [4,3]

o
D3n 223 Td %332 h *432
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Infinite Schwarz triangles on the Euclidean plane, but only finite
possibilities:

@ p=2,q9g=3,r=6 = Hexagonal lattice
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Infinite Schwarz triangles on the Euclidean plane, but only finite
possibilities:

o p=2,g=3,r=6 = Hexagonal lattice

@ p=2,qg=4,r=4 = Square lattice

@ p=3,q9g=3,r =3 = Equilateral-triangular lattice

NI
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Infinite Schwarz triangles on the Euclidean plane, but only finite
possibilities:

o p=2,g=3,r=6 = Hexagonal lattice

@ p=2,qg=4,r=4 = Square lattice

o p=3,q9=3,r =3 = Equilateral-triangular lattice

® (p=2,g=2,r=00 = Ruler)
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Euclidean monodromy

Infinite Schwarz triangles on the Euclidean plane, but only finite

possibilities:

@ p=2,g=3,r =6 —> Hexagonal lattice

@ p=2qg=4r=4 = Square lattice

e p=3,qg=3,r =3 = Equilateral-triangular lattice

e (p=2,9g=2,r=00 = Ruler)
00— ’z—qr:‘ Ao A —

S XA 3 T
& e TN\ T

& B ; -
LY VAN

\
\
\

Note: the projective monodromy is a discrete subgroup of affine
transformations (f — af + b), i.e. a Wallpaper group.
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Infinite Schwarz triangles on the Hyperbolic plane, and infinite
possibilities.

Some examples:

e p=2,g=3,r=7 = (2,3,7) triangular group
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Hyperbolic monodromy

Infinite Schwarz triangles on the Hyperbolic plane, and infinite
possibilities.

Some examples:

e p=2,g=3,r=7 = (2,3,7) triangular group

e p=2,g=4,r=5
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Hyperbolic monodromy

Infinite Schwarz triangles on the Hyperbolic plane, and infinite
possibilities.

Some examples:
e p=2,g=3,r=7 = (2,3,7) triangular group
e p=2,g=4,r=5
e p=3q9g=3,r=4

0

(X4

VA7
L

"

N
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Hyperbolic monodromy

Infinite Schwarz triangles on the Hyperbolic plane, and infinite
possibilities.

Some examples:
e p=2,g=3,r=7 = (2,3,7) triangular group

e p=2qg=4,r=5
ep=3,q=3,r=4

e (p=2,9g=3,r =00 = conjugate to PSLy(Z))




...but in fact it's just the beginning!
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