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Abstract. For every integer g ≥ 1 we describe a construction of a universal Mumford curve of
genus g in the framework of Berkovich spaces over Z. This is achieved in two steps: first, we
build an analytic space Sg that parametrizes marked Schottky groups over all valued fields at once.
We show that Sg is an open, connected analytic space over Z. Then, we prove that the Schottky
uniformization of a given curve behaves well with respect to the topology of Sg, both locally and
globally. As a result, we can construct a relative curve over Sg whose fibers are Schottky-uniformized
curves, and such that every Schottky uniformized curve can be retrieved in this way. Finally, by
studying the action of the group Out(Fg) of outer automorphisms of a free group with g generators
on Sg, we show that the universal Mumford curve is universal also in the spirit of the theory of
moduli spaces.
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Introduction

In his celebrated paper [Mum72], Mumford introduces a class of p-adic curves with a uniformization
property analogous to Schottky uniformization for Riemann surfaces. In this paper, we define a
universal analytic family of Mumford curves of a given genus, in the framework of the theory of
Berkovich spaces over the ring of integers of a number field. We show that such a family is a relative
curve over a suitably defined Schottky space, that admits uniformization by a Schottky group, and
we describe locally the structure of fundamental domains for the action of the universal Schottky
group.

1. Berkovich spaces over Z

1.1. Analytic spaces over Banach rings. Let (A, ‖·‖) be a Banach ring. In this section, we
recall Berkovich’s definition of analytic spaces over A (see [Ber90, Section 1.5]).

We start with the affine analytic space of dimension n over A, denoted by An,an
A . It is a locally

ringed space and we define it in three steps: underlying set, topology and structure sheaf.
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The set underlying An,an
A is the set of bounded multiplicative seminorms on A[T1, . . . , Tn] that are

bounded on A, i.e. the set of maps

| · | : A[T1, . . . , Tn]→ R>0

that satisfy the following properties:
(i) |0| = 0 and |1| = 1;
(ii) ∀P,Q ∈ A[T1, . . . , Tn, |P +Q| 6 |P |+ |Q|;
(iii) ∀P,Q ∈ A[T1, . . . , Tn, |P +Q| = |P | |Q|;
(iv) ∀a ∈ A, |a| 6 ‖a‖.

We set M(A) := A0,an
A and call it the spectrum of A. Note that we have a projection map

prA : An,an
A →M(A) induced by the morphism A→ A[T1, . . . , Tn].

Let x be a point of An,an
A . Denote by | · |x the multiplicative seminorm associated to it. The ring

A[T1, . . . , Tn]/ ker(| · |x) is a domain and we can consider its field of fractions. The seminorm | · |x
induces an absolute value on the later it and we can consider its completion, which we denote
by H(x). We simply denote by | · | the absolute value on H(x) induced by | · |x since no confusion
may result.

We have a natural morphism χx : A[T1, . . . , Tn] → H(x). For each P ∈ A[T1, . . . , Tn], we set
P (x) := χx(P ). Note that, by definition, we have |P (x)| = |P |x.

The set An,an
A is endowed with the coarsest topology such that, for each P ∈ A[T1, . . . , Tn], the

map
x ∈ An,an

A 7→ |P (x)| ∈ R>0

is continuous. The resulting topological space is Hausdorff and locally compact. The spectrumM(A)
is even compact. The projection map prA is continuous.

For each open subset V of An,an
A , we denote by SV the set of element of A[T1, . . . , Tn] that do not

vanish on V and set K(V ) := S−1
V A[T1, . . . , Tn].

Let U be an open subset of An,an
A . We define O(U) to be the set of maps

f : U →
⊔
x∈U
H(x)

such that
(i) for each x ∈ U , f(x) ∈ H(x);
(ii) each x ∈ U has an open neighbourhood V on which f is a uniform limit of elements of K(V ).

One may now define arbitrary analytic spaces over A as locally ringed spaces that are locally
isomorphic to some (V (I),OU/I), where U is an open subset of An,an

A and I is a sheaf of ideals
of OU .

A point x of an analytic space X over A is said to be archimedean or non-archimedean if the
associated absolute valued on H(x) is. We denote by Xa (resp. Xna) the set of archimedean (resp.
non-archimedean) points of x and call it the archimedean (resp. non-archimedean) part of X. It
is well-known that an absolute value on a field is archimedean if, and only if, its restriction to the
prime field is. It follows that we have

Xa = {x ∈ X | |2(x)| > 1} and Xna = {x ∈ X | |2(x)| > 1}

(and 2 could be replaced by any integer bigger than 1). In particular, the archimedean and
non-archimedean parts of X are respectively open and closed subsets of X.
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To go further, one should define the category of analytic spaces over A. When A is a complete
non-archimedean valued field, this has been achieved by V. Berkovich in [Ber90, Ber93] (with
a more general notion of analytic space). In [Lem15], T. Lemanissier gave a definition over an
arbitrary Banach ring. However, the category is shown to enjoy nice properties only under additional
assumptions, for instance when A is a discrete valuation ring (with some mild extra hypotheses) or
the ring of integers of a number field (see Section 1.3 for some definitions related to this setting).
For future use, we note that, in those cases, fiber products exist.

1.2. Relative projective line. In the rest of the text, we will not only need affine spaces, but
also projective spaces and, more precisely, relative projective lines over affine spaces. We explain
here how to construct them in a down-to-earth way. Let (A, ‖·‖) be a Banach ring. Let n ∈ N and
denote by S the analytic space An,an

A with coordinates T1, . . . , Tn.
Let U (resp. V ) be the affine space An+1,an

A with coordinates T1, . . . , Tn, Z (resp. T1, . . . , Tn, Z
′)

and denote by U0 (resp. V0) the open subset defined by the inequality Z 6= 0 (resp. Z ′ 6= 0). The
morphism

A[T1, . . . , Tn, Z, Z
−1] → A[T1, . . . , Tn, Z

′, Z ′−1]
Ti 7→ Ti
Z 7→ Z ′−1

induces an isomorphism U0
∼−→ V0.

We denote by P1
S the analytic space obtained by glueing U and V along U0 and V0 via the previous

isomorphism. It comes with a natural projection morphism π : P1
S → S. For any open subset S′ of S,

we denote by P1
S′ the analytic space π−1(S′).

When n = 0, we will denote P1
M(A) by P1,an

A . Note that, for each s ∈ S, the fiber π−1(s) identifies
to P1,an

H(s).

Let M :=

(
a b
c d

)
∈ GL2(O(S)). We may associate to it an endomorphism of P1

S by the usual

expression in coordinates

Z 7→ aZ + b

cZ + d
.

This way we get an action of GL2(O(S)) on P1
S . It factors through PGL2(O(S)). The image of M

in PGL2(O(S)) will be denoted by [M ] =

[
a b
c d

]
. Note that the action restricts to an action on

each fiber of π, hence also on P1
S′ for any open subset S′ of S.

1.3. Berkovich spaces over Z. In this section, we consider the special case where (A, ‖·‖) =
(Z, | · |∞), where | · |∞ denotes the usual absolute value. We refer to [Poi10], and especially Section 3.1
there, for more details.

The spectrum M(Z) is easily described using Ostrowski’s theorem. It contains the following
points:

• a point a0, associated to the trivial absolute value | · |0, with residue field Q;
• for each ε ∈ (0, 1], a point aε∞ associated to the absolute value | · |ε∞, with residue field R;
• for each prime number p and each ε ∈ (0,+∞), a point aεp associated to the absolute
value | · |εp, with residue field Qp;
• for each prime number p, a point ap,0 associated to the seminorm on Z induced by the trivial
absolute value on Z/pZ, with residue field Z/pZ.

Its archimedean part is the open subsetM(Z)a = {aε∞ | ε ∈ (0, 1]}.
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The topology ofM(Z) is quite simple. First, the branches are all homeomorphic to segments: for
each prime number p, the map

bp : η ∈ [0, 1] 7→


ap,0 if η = 0;

a
− log(η)
p if η ∈ (0, 1);

a0 if η = 1

is a homeomorphism and the map

β∞ : ε ∈ [0, 1] 7→

{
a0 if ε = 0;

aεp if ε ∈ (0, 1]

is a homeomorphism too. Moreover, a subset U ofM(Z) containg a0 is open if, and only if, the
intersection of U with each bp([0, 1]) and β∞([0, 1]) is open and only finitely many of those sets are
not contained entirely in U . In other words,M(Z) is homeomorphic to the Alexandroff one-point
compactification of the disjoint union of the bp([0, 1))’s and β∞((0, 1]), the point at infinity being a0.

We will often think about an analytic space over Z as a family of analytic spaces over the different
valued fields associated to the points ofM(Z). The spaces over Qp, Q, Z/pZ (the last two being
endowed with the trivial absolute value) are then usual Berkovich spaces. Recall that the analytic
spaces over R in the sense of Berkovich are the quotients of the corresponding usual analytic spaces
over C by the complex conjugation.

Let us be more precise in the case of an affine space An,an
R,| · |ε∞

, for some ε ∈ (0, 1]. The complex
conjugation induces an automorphism of Cn given by

c : z = (z1, . . . , zn) ∈ Cn 7→ (z̄1, . . . , z̄n) ∈ Cn

and we have a homeomorphism

ρε : z ∈ Cn/〈c〉 7→ vz,ε ∈ An,an
R,| · |ε∞

,

where vz,ε : P (T ) ∈ R[T ] 7→ |P (z)|ε∞. It follows that all the archimedean fibers are the same. More
precisely, the map

Φ: (v, ε) ∈ An,an
R,| · |∞ × (0, 1] 7→ ρε ◦ ρ−1

1 (v) ∈
(
A3g−3,an
Z

)a
is a homeomorphism. Note that Φ(v, ε) may also be defined explicitly as the seminorm defined by

Φ(v, ε) : P (T ) ∈ R[T ] 7→ |P (v)|ε.

In particular, the seminorms v and Φ(v, ε) are equivalent.

As regards topology, analytic spaces over Z are known to be locally path-connected thanks
to [Lem15]. As one can expect, surprising phenomena occur when passing from archimedean to
the non-archimedean part. We illustrate this by giving two examples of continuous sections of the
projection prZ : A1,an

Z →M(Z).

Example 1.3.1. Let α be an element of C that is transcendental over Q. For each a ∈ M(Z)na,
denote by ηa,1 the Shilov boundary of the disc of center 0 and radius 1, i.e. the Gauß point, in the
fiber pr−1

Z (a). The map

σ : a ∈M(Z) 7→

{
ηa,1 if a is non-archimedean;
ρε(α) if a = aε∞ with ε ∈ (0, 1].
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is a continuous section of prZ : A1,an
Z →M(Z). For this it is enough to show that ρε(α) tends to ηa0,1

when ε goes to 0. Remark that the point ηa0,1 corresponds to the trivial absolute value on Z[T ] and
that, for each P ∈ Z[T ]− {0}, we have

|P (ρε(α))| = |P (α)|ε∞ −−−→
ε→0

1

since α is transcendental over Q. The result follows.

Example 1.3.2. Let r ∈ (0, 1). For each a ∈ M(Z)na, denote by ηa,r the Shilov boundary of the
disc of center 0 and radius r in the fiber $−1(a). The map

τr : a ∈M(Z) 7→

{
ηa,r if a is non-archimedean;
ρε(r

1/ε) if a = aε∞ with ε ∈ (0, 1].

is a continuous section of prZ : A1,an
Z → M(Z). It is enough to show that ρε(r1/ε) tends to ηa0,r

when ε goes to 0. This is clear since, for each ε ∈ (0, 1], we have

|T (ρε(r
1/ε)| = |r1/ε|ε∞ = r

and ηa0,r is the only point of the fiber pr−1
Z (a0) where T has absolute value r.

One can build a similar theory replacing Z by the ring of integers OK of a number field K. To be
more precise, let us denote by ΣK the set of complex embeddings of K up to complex conjugation
and endow OK with the norm

‖·‖K := max(|σ( ·)|∞, σ ∈ ΣK).

Then, the spectrumM(OK) looks very similar toM(Z): it is a tree with one point associated to
the trivial absolute value and, for each place of K, one branch emanating from it.

Remark that the restriction of seminorms induces a mapM(OK)→M(Z), and more generally a
map An,an

OK
→ An,an

Z . Those maps are continuous and open.
Note also that M(OK) is an analytic space over Z in the sense of Section 1.1. In particular,

by [Lem15], it makes sense to consider the fiber product of an analytic space over Z by M(OK)

overM(Z). We obtain canonical identifications An,an
OK

= An,an
Z ×M(Z)M(OK), P1,an

OK
= P1,an

Z ×M(Z)

M(OK), etc.

1.4. Some useful inequalities. In this section, we fix a complete valued field (k, | · |), archimedean
or not. We state a few results that will be useful later.

Lemma 1.4.1. Let a, b ∈ k. We have

|a+ b| 6 max(|2|, 1) max(|a|, |b|).
If |a| > max(|2|, 1) |b|, then we have

|a+ b| > |a|
max(|2|, 1)

.

Proof. If (k, | · |) is non-archimedean, then max(|2|, 1) = 1, and those inequalities are well-known.
Assume that (k, | · |) is archimedean. Then (k, | · |) embeds isometrically into (C, | · |ε∞) for some

ε ∈ (0, 1] and it is enough to prove the result for the latter. In this case, we have max(|2|, 1) = 2ε.
For any a, b ∈ C, we have |a + b|∞ 6 2 max(|a|∞, |b|∞) and the first result follows by raising the
inequality to the power ε.

The inequality applied to a+ b and −b gives |a| 6 |2|max(|a+ b|, |b|). As a consequence, if we
have |a| > |2| |b|, we must have |a| 6 |2| |a+ b|. �

It will be useful to introduce a notation for discs. We consider here the Berkovich affine line A1,an
k

over k with coordinate T .
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Notation 1.4.2. For a ∈ k and r ∈ R>0, we set

D+(a, r) := {x ∈ A1,an
k | |T (x)− a| 6 r},

D−(a, r) := {x ∈ A1,an
k | |T (x)− a| < r}.

Lemma 1.4.3. Let a, b ∈ k and ρa, ρb ∈ R>0. If |a− b| > max(|2|, 1) max(ρa, ρb), then the closed
discs D+(a, ρa) and D+(b, ρb) are disjoint.

If | · | is non-archimedean, then the closed discs D+(a, ρa) and D+(b, ρb) are disjoint if, and only
if, |a− b| > max(ρa, ρb).

Proof. If there exists a point x in D+(a, ρa)∩D+(b, ρb), then we have |T (x)−a| 6 ρa and |T (x)−b| 6
ρb in H(x), hence

|a− b| = |(a− T (x)) + (T (x)− b)| 6 max(|2|, 1) max(ρa, ρb)

by Lemma 1.4.1. The first part of the result follows.
The converse implication in the non-archimedean setting is well-known. �

Lemma 1.4.4. Let a, b ∈ k. If |a+ b|2 > max(|4|, 1) |ab|, then |a| 6= |b|.
If | · | is non-archimedean, then we have |a| 6= |b| if, and only if, |ab| < |a+ b|2.

Proof. If |a| = |b|, then, by Lemma 1.4.1, we have |a+ b| 6 max(|2|, 1) |a|, hence
|a+ b|2 6 max(|2|2, 1) |a|2 = max(|4|, 1) |ab|.

The first part of the result follows.
Let us now assume that | · | is non-archimedean. Assume that |a| 6= |b|. Then, we have |a+ b| =

max(|a|, |b|) > min(|a|, |b|), hence
|a+ b|2 = max(|a|, |b|)2 > max(|a|, |b|) min(|a|, |b|) = |a| |b|.

The converse implication follows directly from the first part of the statement. �

1.5. Metric structure. In this section, we fix a complete non-archimedean valued field (k, | · |).
In the following, we will often encounter the projective line P1,an

k and we gather here a few metric
properties.

First recall that P1,an
k has the structure of a real tree (see [Duc, (3.4.20)]). In particular, for any

two distinct points x, y ∈ P1,an
k , there exists a unique segment [xy] joining x to y. Recall also that

each segment consisting of points of type 2 or 3 carries a multiplicative length (or modulus) that is
invariant under isomorphisms of P1,an

k , i.e. under Möbius transformations (see [Duc, (3.6.23)] ). To
define the length of such a segment I, one may proceed as follows.

Notation 1.5.1. For a ∈ k and r ∈ R>0, we denote by ηa,r the unique point is the Shilov boundary
of the closed disc D+(a, r).

There exist a finite extension k′ of k, a coordinate T on P1,an
k , a ∈ k′ and r 6 s ∈ R>0 such that I

is the image of the segment [ηa,r, ηa,s] by the projection map P1,an
k′ → P1,an

k . We then set

`(I) :=
s

r
∈ [1,+∞).

It is independent of the choices made. It will convenient to set `(∅) := 1.

Lemma 1.5.2. Let a, b, c, d be distinct points of P1(k) and denote their cross-ratio by [a, b; c, d].
Set I := [ab] ∩ [cd]. It is either a segment consisting of points of type 2 or 3 or the empty set. If I

is a non-trivial segment and if going from a to b and from c to d induces the same orientation on I,
then we set ε := −1. In all other cases, we set ε := 1.

Then, we have
|[a, b; c, d]| = `(I)ε.
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Proof. Since the cross-ratio is invariant under Möbius transformations, we may assume that b = 1,
c = 0 and d = ∞. Assume that |a| < 1. Then [ab] ∩ [cd] = [η0,|a|, η0,1] and going from a to b and
from c to d induces the same orientation on it, hence ε = −1. We have

`([ab] ∩ [cd])−1 = |a| = |[a, b; c, d]|

as desired. The other cases are dealt with similarly.
�

2. Schottky groups

The notion of Schottky group is classical over C (see [MSW15]) and even over a complete valued
non-archimedean field (see [GvdP80]). The definitions, results and proofs that appear in this section
are adaptations of the standard ones to a relative setting.

2.1. Geometric situation. Let S be an analytic space over a Banach ring (archimedean or not).
As in Section 1.2, consider the analytic space P1

S and the projection morphism π : P1
S → S. In this

section, we describe geometric properties of the action of some groups of automorphisms of P1
S . It

follows the strategy of [GvdP80, I, 4.1].

Definition 2.1.1. Let (γ1, . . . , γg) ∈ PGL2(O(S))g. Let B =
(
B+(γεi ), 1 6 i 6 g, ε = ±1

)
be a

family of closed subsets of P1
S that are disjoint. For each i ∈ {1, . . . , g} and ε ∈ {−1, 1}, set

B−(γεi ) := γεi (P1
S −B+(γ−εi )).

For each s ∈ S, i ∈ {1, . . . , g}, ε ∈ {−1, 1} and σ ∈ {−,+}, set Bσ
s (γεi ) := Bσ(γεi ) ∩ π−1(s).

We say that B is a Schottky figure adapted to (γ1, . . . , γg) if, for each s ∈ S, i ∈ {1, . . . , g} and
ε ∈ {−1, 1}, B+(γεi ) is a closed disc in π−1(s) ' P1

H(s) and B−(γεi ) is a maximal open disc inside it.

In this section, we assume that we are in the situation of Definition 2.1.1. For σ ∈ {−,+}, we set

F σ := P1
S −

⋃
16i6g
ε=±1

B−σ(γεi ).

Note that, for γ0 ∈ {γ±1
1 , . . . , γ±1

g } and σ ∈ {−,+}, Bσ(γ0) is the unique disc among the W σ(γ)’s
containing γ0F

σ.

Set ∆ := {γ1, . . . , γg}. Denote by Fg the free group over the alphabet ∆ and by Γ the subgroup
of PGL2(O(B)) generated by ∆. We have a natural morphism ϕ : Fg → Γ sending each γ in ∆ to γ.
It induces an action of Fg on P1

S .
We now define subsets of P1

S associated to the elements of Fg. As usual, we will identify those
elements with the words over the alphabet ∆± := {γ±1

1 , . . . , γ±1
g }.

Notation 2.1.2. For a non-empty reduced word w = w′γ over ∆ and σ ∈ {−,+}, we set

Bσ(w) := w′Bσ(γ).

Lemma 2.1.3. Let u be a non-empty reduced word over ∆±. Then we have uF+ ⊆ B+(u).
Let v be a non-empty reduced word over ∆±. If there exists a word w over ∆± such that u = vw,

then we have uF+ ⊆ B+(u) ⊆ B+(v). If, moreover, u 6= v, then we have B+(u) ⊆ B−(v).
Conversely, if we have B+(u) ⊆ B+(v), then there exists a word w over ∆± such that u = vw.

Proof. Write in a reduced form u = u′γ with γ ∈ ∆±. We have γF+ ⊆ B+(γ), by definition.
Applying u′, it follows that uF+ ⊆ B+(u).
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Assume that there exists a word w such that u = vw and let us prove that B+(u) ⊆ B+(v). Be
first assume that v is a single letter. We will argue by induction on the length |u| of u. If |u| = 1,
then u = v and the result is trivial. If |u| > 2, denote by δ the first letter of w. By induction, we
have B+(w) ⊆ B+(δ). Since δ 6= v−1, we also have B+(δ) ⊆ P1

B −B+(v−1). The result follows by
applying v.

Let us now handle the general case. Write in a reduced form v = v′γ with γ ∈ ∆±. By the former
case, we have B+(γw) ⊆ B+(γ) and B+(γw) ⊆ B−(γ) if w is non-empty. The result follows by
applying v′.

Assume that we have B+(u) ⊆ B+(v). We will prove that there exists a word w such that u = vw
by induction on |v|. Write in reduced forms u = γu′ and v = δv′. By the previous result, we have
B+(u) ⊆ B+(γ) and B+(v) ⊆ B+(δ), hence γ = δ. If |v| = 1, this proves the result. If |v| > 2, then
we deduce that we have B+(u′) ⊆ B+(v′), hence, by induction, there exists a word w such that
u′ = v′w. It follows that u = vw. �

Corollary 2.1.4. The morphism ϕ is an isomorphism and the group Γ is free on the generators
γ1, . . . , γg.

Proof. If w is a non-empty word, then the previous lemma ensures that wF+ 6= F+. The result
follows. �

As a consequence, we will now identify Γ with Fg and express the elements of Γ as words over the
alphabet ∆±. In particular, we will allow us to speak of the length of an element γ of Γ. We will
denote it by |γ|.

Set
On :=

⋃
|γ|6n

γF+.

Since the complement of F+ is the disjoint union of the open disks B−(γ) with γ ∈ ∆±, it follows
from the description of the action that, for each n > 0, we have

P1
S −On =

⊔
|γ|=n+1

B−(w).

It follows from Lemma 2.1.3 that, for each n > 0, On is contained in the interior of On+1. We set

O :=
⋃
n>0

On =
⋃
γ∈Γ

γF+.

2.2. Over a valued field. Let (k, | · |) be a complete valued field. In this section, we will focus on
the particular case S =M(k). In this setting, the material of this section is classical: see [MSW15,
Project 4.5] and [GvdP80, I, 4.1.3] in the archimedean and non-archimedean case respectively.

We still assume that we are in the situation of Definition 2.1.1. Set ι :=

[
0 1
1 0

]
∈ PGL2(k). It

corresponds to the map z 7→ 1/z on P1,an
k . The first result follows from an explicit computation.

Lemma 2.2.1. Let α ∈ k∗ and ρ ∈ [0, |α|). Then, we have

ιD+(α, ρ) =


D+

(
ᾱ

|α|2 − ρ2
,

ρ

|α|2 − ρ2

)
if k is archimedean;

D+

(
1

α
,
ρ

|α|2

)
otherwise.

�
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Lemma 2.2.2. Let r > 0 and let γ =

[
a b
c d

]
in PGL2(k) such that γD+(0, r) ⊆ A1,an

k . Then, we

have |d| > r|c| and

γD+(0, r) =


D+

(
bd̄− ac̄r2

|d|2 − |c|2 r2
,
|ad− bc| r
|d|2 − |c|2 r2

)
if k is archimedean;

D+

(
b

d
,
|ad− bc| r
|d|2

)
otherwise.

Proof. Let us first assume that c = 0. Then, we have d 6= 0, so the inequality |d| > r|c| holds, and γ
is affine with ratio a/d. The result follows.

Let us now assume that c 6= 0. In this case, we have γ−1(∞) = −d
c , which does not belong

to D(0, r) if, and only if, |d| > r|c|. Note that we have the following equality in k(T ):
aT + b

cT + d
=
a

c
− ad− bc

c2

1

T + d
c

.

By Lemma 2.2.1, there exist β ∈ k and σ > 0 such that ιD+(dc , r) = D+(β, σ). Then, we have
γD+(0, r) = D+(ac −

ad−bc
c2

β,
∣∣ad−bc

c2

∣∣σ) and the result follows from an explicit computation. �

Lemma 2.2.3. Let D′ ⊆ D be closed concentric discs in A1,an
k . Let γ ∈ PGL2(k) such that

γD′ ⊆ γD ⊆ A1,an
k . Then, we have

radius of γ(D′)

radius of γ(D)
6

radius of D′

radius of D
,

with an equality if k is non-archimedean.

Proof. Let p be the center of D and D′ and let τ be the translation sending p to 0. Up to changing D
into τD, D′ into τD′, γ into γτ−1 and γ′ into γ′τ−1, we may assume that D and D′ are centered
at 0. The result then follows from Lemma 2.2.2. �

Proposition 2.2.4. Assume that ∞ ∈ F−. Then, there exist R > 0 and c ∈ (0, 1) such that, for
each γ ∈ Γ− {id}, B+(γ) is a closed disc of radius at most Rc|γ|.

Proof. Let δ, δ′ ∈ ∆±. By Lemma 2.1.3, we have an inclusion of discs B+(δ′δ) ⊆ B+(δ′). There
exists fδ,δ′ ∈ PGL2(k) that sends those discs to concentric disks inside A1,an

k . In the non-archimedean
case, the discs are already concentric, so one may take fδ,δ′ = id while, in the archimedean case,
there is some work to be done, for which we refer to [MSW15, Project 3.4]. Set

cδ,δ′ :=
radius of fδ,δ′(B+(δ′δ))

radius of fδ,δ′(B+(δ′))
∈ (0, 1).

For each γ ∈ Γ such that γδ′ is a reduced word, by Lemma 2.2.3, we have

radius of B+(γδ′δ)

radius of B+(γδ′)
=

radius of γf−1
δ,δ′fδ,δ′(B

+(δ′δ))

radius of γf−1
δ,δ′fδ,δ′(B

+(δ′))
6 cδ,δ′ .

Set
R := max({radius of B+(γ) | γ ∈ ∆±})

and
c := max({cγ,γ′ | γ, γ′ ∈ ∆±, γ′ 6= γ−1}).

By induction, for each γ ∈ Γ− {id}, we have

radius of B+(γ) 6 Rc|γ|.

�
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Corollary 2.2.5. Let w = (wn) 6=0 be a sequence of reduced words over ∆± such that the associated
sequence of discs (B+(wn))n>0 is strictly decreasing. Then, the intersection

⋂
n>0B

+(wn) is a single
k-rational point pw. Moreover, the discs B+(wn) form a basis of neighbourhoods of pw in P1,an

k .

Proof. Let k0 be a finite extension of k such that F− ∩ P1,an
k (k0) 6= ∅. Consider the projection

morphism π0 : P1,an
k0
→ P1,an

k . For each i ∈ {1, . . . , g}, γi may be identified with an element γi,0
in PGL2(k0). The family (π−1

0 (B−(γ±1
i ), 1 6 i 6 g, ε = ±1) is a Schottky figure adapted to

(γ1,0, . . . , γg,0). We will denote with a subscript 0 the associated sets: F−0 , B+
0 (w), etc. Note that

these sets are all equal to the preimages of the corresponding sets by π0.
Up to changing coordinates on P1,an

k0
, we may assume that ∞ ∈ F−0 . The sequence of discs

(B+
0 (wn))n>0 is strictly decreasing, so by Lemma 2.1.3, the length of wn tends to ∞ when n goes

to ∞ and, by Proposition 2.2.4, the radius of B+
0 (wn) tends to 0 when n goes to ∞. It follows that⋂

n>0B
+
0 (wn) is a single point pw,0 and that the discs B+

0 (wn) form a basis of neighbourhood of pw,0
in P1,an

k0
.

If k0 is non-archimedean, then pw,0 is a point of type 1, i.e. a point of P1,an
k0

(K), where K is the
completion of an algebraic closure of k0 (hence of k). If k0 is archimedean, then, trivially, pw,0 is a
point of P1,an

k0
(K) with K := C.

Set pw := π0(pw,0) ∈ P1,an
k (K). It follows from the results over k0 that

⋂
n>0B

+(wn) = {pw} and
that the discs B+(wn) form a basis of neighbourhoods of pw in P1,an

k .
It remains to show that pw is k-rational. Note that pw belongs to the closure of P1,an

k (k), since
it is the limit of the centers of the B+(wn)’s. Since k is complete, it is closed in K and the result
follows. �

Corollary 2.2.6. The set O is dense in P1,an
k and its complement is contained in P1,an

k (k). �

2.3. Limit sets. We return to the general case of Definition 2.1.1 with an arbitrary analytic space S.

Definition 2.3.1. We say that a point x ∈ P1
S is a limit point if there exist x0 ∈ P1

S and a sequence
(γn)n>0 of distinct elements of Γ such that limn→∞ γn(x0) = x.

The limit set L of Γ is the set of limit points of Γ.

Following [Bou71, III, §4, Définition 1], we say that the action of Γ on a subset E of P1
S is proper

if the map
Γ× E → E × E
(γ, x) 7→ (x, γ · x)

is proper, where Γ is endowed with the discrete topology. By [Bou71, III, §4, Proposition 7], it is
equivalent to requiring that, for every x, y ∈ E, there exist neighbourhoods Ux and Uy of x and y
respectively such that the set {γ ∈ Γ | γUx ∩ Uy 6= ∅} is finite. By [Bou71, III, §4, Proposition 3], in
this case, the quotient Γ\E is Hausdorff.

We denote by C the set of points x ∈ P1
S that admit a neighbourhood Ux satisfying {γ ∈ Γ |

γUx∩Ux 6= ∅} = {id}. Then C is an open subset of P1
S and the quotient map (P1

S−C)→ Γ\(P1
S−C)

is a local homeomorphism. In particular, the topological space Γ\(P1
S − C) is naturally endowed

with a structure of analytic space via this map.

Proposition 2.3.2. We have O = C = P1
B − L. Moreover, the action of Γ on O is free and proper

and the quotient map Γ\O → S is proper.

Proof. Let x ∈ L. By definition, there exists x0 ∈ P1
B and a sequence (γn)n>0 of distinct elements

of Γ such that limn→∞ γn(x0) = x. Assume that x ∈ F+. Since F+ is contained in the interior
of O1, there exists N > 0 such that γN (x0) ∈ O1, hence we may assume that x0 ∈ O1. Lemma 2.1.3
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then leads to a contradiction. It follows that L does not meet F+, hence, by Γ-invariance, L is
contained in P1

S −O.
Let y ∈ P1

S−O. By definition, there exists a sequence (wn)n>0 of reduced words over ∆± such that,
for each n > 0, |wn| > n and y ∈ B−(wn). Let y0 ∈ F−. By Lemma 2.1.3, for each n > 0, we have
wn(y0) ∈ B−(wn) and the sequence of discs (B+(wn))n>0 is strictly decreasing. By Corollary 2.2.5,
(wn(y0))n>0 tends to y, hence y ∈ L. It follows that P1

S −O = L.
Set

U := F+ ∪
⋃

γ∈∆±

γF− = P1
S −

⊔
|γ|=2

B+(γ).

It is an open subset of P1
S and it follows from the properties of the action (see Lemma 2.1.3) that

we have {γ ∈ Γ | γU ∩ U 6= ∅} = {id} ∪∆±. Using the fact that the stabilizers of the points of U
are trivial, we deduce that U ⊆ C. Letting Γ act, it follows that O ⊆ C. Since no limit point may
belong to C, we deduce that this is actually an equality.

We have already seen that the action is free on O. Let us prove that it is proper. Let x, y ∈ O.
There exists n > 0 such that x and y belong to the interior of On. By Lemma 2.1.3, the set
{γ ∈ Γ | γOn ∩On 6= ∅} is made of element of length at most 2n+ 1. In particular, it is finite. We
deduce that the action of Γ on O is proper.

Let K be a compact subset of S. Since π : P1
S → S is proper, π−1(K) is compact, hence its closed

subset F+ ∩ π−1(K) is compact too. Since F+ ∩ π−1(K) contains a point of every orbit of every
element of π−1(K), we deduce that Γ\(O ∩ π−1(K)) is compact. �

2.4. Koebe coordinates. Let (k, | · |) be a complete valued field and and let γ be a loxodromic
element of PGL2(k). The eigenvalues of γ belong to a quadratic extension of k and have distinct
absolute values. If k is archimedean, it follows immediately that they both belong to k, hence γ
admits exactly two fixed points α, α′ ∈ P1,an(k). If k is non-archimedean, then the result still holds
by the same argument in characteristic different from 2 and, in general, as a consequence of Hensel’s
lemma (see [GvdP80, I, 1.4]).

We can choose α so that the associated eigenvalue has minimal absolute value. In this case, α
and α′ will be respectively the attracting and repelling fixed points of the Möbius transformation
associated to γ. Denote by β the multiplier of γ, i.e. the ratio of the eigenvalues such that |β| < 1.
For ε ∈ PGL2(k) such that ε(0) = α and ε(∞) = α′, we have ε−1γε(z) = βz. It follows that
the parameters α, α′ and β determine uniquely the transformation γ. They are called the Koebe
coordinates of γ.

Conversely, given (α = [u : v], α′ = [u′ : v′], β) ∈ (P1,an
k )3 with |α| 6= |α′| (i.e. |uv′| 6= |u′v|) and

0 < |β| < 1, it is not difficult to determine explicitly the element of PGL2(k) that has those Koebe
coordinates. It is given by

M(α, α′, β) =

[
uv′ − βu′v (β − 1)uu′

(1− β)vv′ βuv′ − u′v

]
∈ PGL2(k).

In the rest of the paper, we will sometimes abuse notation and allow ourselves to use M(α, α′, β)
in different contexts, for example when α, α′, β belong to a ring (provided the conditions on the
absolute values are satisified at each point of its spectrum). This should not cause any trouble.

The following interpretation of |β| will be useful later.

Lemma 2.4.1. Assume that k is non-archimedean. Let D be an open disc of P1,an
k containing α′

and not α. Then γ(D) is an open disc containing α′ and the segment joining the boundary point
of D to that of γ(D) consists of points of type 2 or 3 and has length equal to |β|−1.

11



Proof. Möbius transformations preserve open discs, their boundary points, and the lenght of segments.
Since ε−1γε(ε−1(D)) = ε−1(γ(D)), it is enough to prove the result for ε−1γε and ε−1(D). In this
case, it is clear.

�

We now check that the Koebe coordinates depend analytically on the entries of the corresponding
matrix. In fact, this is true not only over a valued field, but even over Z. To prove this, let us
introduce some notation. Set

KZ := {(α, α′, β) ∈ (P1,an
Z )3 | |α| 6= |α′|, 0 < |β| < 1}.

It is an open subset of (P1,an
Z )3. We also consider P4,an

Z and write its elements in coordinates in the

form
[
a b
c d

]
instead of the usual [a : b : c : d]. Denote by LZ the set of elements x ∈ P4,an

Z such that

the matrix [
a(x) b(x)
c(x) d(x)

]
∈ PGL2(H(x))

is loxodromic.

Lemma 2.4.2. The subset LZ is open in P4,an
Z .

Proof. Let us first consider the archimedean part La
Z of LZ. By Section 1.3, it is enough to prove that

its intersection with the fiber over the point a1
∞, corresponding to the usual absolute value, is open.

This allows to translate the statement into a statement about P4(C) (since the set is clearly stable
by complex conjugation), where it is a consequence of the continuity of the roots of a (degree 2)
polynomial.

Let us now handle the non-archimedean part Lna
Z . By Lemma 1.4.4, we have

Lna
Z =

{[
a b
c d

]
∈
(
P4,an
Z
)na

∣∣∣∣ |ad− bc| < |a+ d|2
}
.

Let x ∈ Lna
Z . There exists r > 1 such that r |ad− bc| < |a+ d|2. The open subset of P4,an

Z defined by
the inequality

r max(|4|, 1) |ad− bc| < |a+ d|2

contains x and sits inside LZ, by Lemma 1.4.4 again. The result follows. �

Proposition 2.4.3. The morphism

M : (α, α′, β) ∈ KZ 7→M(α, α′, β) ∈ LZ

is an isomorphism of analytic spaces over Z. Its inverse is the map that associates to a loxodromic
matrix its Koebe coordinates.

Proof. The map M is clearly analytic and it follows from the discussion above that it is a bijection.
Let us prove that its inverse is also analytic.

Let m ∈ LZ. We may work in an affine chart of P4,an
Z containing m and identify it to A4,an

Z . As a
result, we may assume that the coefficients a(m), b(m), c(m), d(m) of m are well-defined. Denote
by λ(m) and λ′(m) the eigenvalues of the matrix associated to m, chosen so that |λ(m)| < |λ′(m)|.
Remark that the inequality on the absolute values implies that (a+ d)(m) 6= 0. The elements λ(m)
and λ′(m) are then the two roots of the characteristic polynomial of the matrix:

X2 − (a+ d)(m)X + (ad− bc)(m) = (a+ d)2(m)
(
Y 2 − Y +

ad− bc
(a+ d)2

(m)
)
,

where Y = 1
(a+d)(m) X.

12



Note that the polynomial P (Y ) := Y 2 − Y + (ad− bc)/(a+ d)2 (which is actually well-defined on
the whole LZ) has analytic coefficients. We claim that λ and λ′ are analytic functions of m. If m is
archimedean and the discriminant ∆(m) of P (m)(Y ) is not real, this follows from the fact that there
exists a determination of the square-root that is analytic in the neighbourhood of ∆(m). If m is
archimedean and ∆(m) is real, then ∆(m) > 0, since otherwise λ(m) and λ′(m) would be complex
conjugates hence would have the same absolute value. The result then follows from the fact that
there exists a determination of the square-root that is analytic in the neighborhood of ∆(m) and
commutes with the complex conjugation.

Assume that m is non-archimedean. The stalk Om of the structure sheaf is a local ring (whose
maximal ideal is the set of elements that vanish at m). Denote its residue field by κ(m) and set

κ(m)◦ := {f ∈ κ(m) | |f(m)| 6 1}

and
κ(m)◦◦ := {f ∈ κ(m) | |f(m)| < 1}.

The set κ(m)◦ is a local ring with maximal ideal κ(m)◦◦. We denote its residue field by κ̃(m). By
Lemma 1.4.4, the image of P (Y ) in κ(m)[Y ] has coefficients in κ(m)◦ and its reduction is Y 2 − Y .
The roots λ(m) and λ′(m) of P (m)(Y ) reduce respectively to the roots 0 and 1 of Y 2 − Y . By
[Poi13, Corollaire 5.3] and [Poi10, Corollaire 2.5.2], κ(m)◦ and Om are henselian, and it follows
that λ and λ′ are analytic in the neighbourhood of m.

It is now clear that β = λ/λ′ is analytic in the neighbourhood of m. Note that we can also
recover α and α′ from λ and λ′ since they correspond to the associated eigenline. More precisely,
we have α(m) = [b(m) : (λ− a)(m)] if λ(m) 6= a(m) and α(m) = [(λ− d)(m) : c(m)] otherwise, and
similarly for α′. It follows that α and α′ are analytic in the neighbourhood of m. �

2.5. Group theory. Let (k, | · |) be a complete valued field. In this section, we give the general
definition of Schottky group over k and explain how it relates to the geometric situation considered
in Section 2.1.

Definition 2.5.1. A Schottky group over k is a subgroup of PGL2(k) that is free, finitely generated,
and discontinuous. As a consequence, every element of a Schottky group is loxodromic, i.e. is
represented by a matrix whose eigenvalues have different absolute value.

Remark 2.5.2. The notion of Schottky group over k is left unchanged if one replaces the absolute
value on k by an equivalent one.

Remark 2.5.3. Let (k′, | · |′) be an extension of (k, | · |). A subgroup Γ of PGL2(k) is a Schottky group
over k if, and only if, it is a Schottky group over k′.

Lemma 2.5.4. Let Γ be a subgroup of PGL2(k) generated by finitely many elements γ1, . . . , γg. If
there exists a Schottky figure adapted to (γ1, . . . , γg), then Γ is a Schottky group.

Proof. �

Definition 2.5.5. Let γ =

[
a b
c d

]
∈ PGL2(k), with c 6= 0, be a loxodromic matrix and let λ ∈ R>0

be a positive real number. We call open and closed twisted Ford discs associated to (γ, λ) the sets

D−(γ,λ) :=
{
z ∈ k

∣∣∣ λ|γ′(z)| = λ
|ad− bc|
|cz + d|2

> 1
}

and

D+
(γ,λ) :=

{
z ∈ k

∣∣∣ λ|γ′(z)| = λ
|ad− bc|
|cz + d|2

> 1
}
.
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Lemma 2.5.6. Let α, α′, β ∈ k with |β| < 1 and let λ ∈ R>0. Set γ = M(α, α′, β) =

[
a b
c d

]
. The

twisted Ford discs D−(γ,λ) and D+
(γ,λ) have center

α′ − βα
1− β

= −d
c

and radius

ρ =
(λ|β|)1/2|α− α′|

|1− β|
=

(λ |ad− bc|)1/2

|c|
.

The twisted Ford discs D−
(γ−1,λ−1)

and D+
(γ−1,λ−1)

have center

α− βα′

1− β
=
a

c

and radius ρ′ = ρ/λ. �

Lemma 2.5.7. For every loxodromic γ ∈ PGL2(k) that does not fix ∞ and every λ ∈ R>0, we have
γ(D+

(γ,λ)) = P1,an
k −D−

(γ−1,λ−1)
.

Proof. Let us write γ =

[
a b
c d

]
. Since γ does not fix ∞, we have c 6= 0. Let K be a complete valued

extension of k and let z ∈ K. We have | − cγ(z) + a| |cz + d| = |ad− bc|, hence

z ∈ D(γ,λ) ⇐⇒ λ
|ad− bc|
|cz + d|2

≥ 1 ⇐⇒ λ−1 |ad− bc|
| − cγ(z) + a|2

≤ 1.

Since we have γ−1 =

[
d −b
−c a

]
, and the latter condition describes precisely the complement of

D−
(γ−1,λ−1)

.
�

Definition 2.5.8. Let Γ be a Schottky group of rank g. We say that a basis B = (γ1, . . . , γg) of Γ
is a Schottky basis if there exists a Schottky figure that is adapted to it. The datum (Γ, B) of a
Schottky group and a Schottky basis B of Γ is called a marked Schottky group.

If k is archimedean, it is a classical result of Marden [Mar74] that there exist Schottky groups
with no Schottky bases. On the contrary, in the non-archimedean case, a theorem of Gerritzen
ensures that Schottky bases always exist (see [Ger74, §2, Satz 1]).

Theorem 2.5.9. Assume that k is non-archimedean. Let Γ be a Schottky group over k whose limit set
does not contain ∞. Then, there exist a basis (δ1, . . . , δg) of Γ and positive real numbers λ1, . . . , λg ∈
R>0 such that the family of twisted Ford discs

(
D−δ1,λ1 , . . . , D

−
δg ,λg

, D−
δ−1
1 ,λ−1

1

, . . . , D−
δ−1
g ,λ−1

g

)
is a Schot-

tky figure adapted to (δ1, . . . , δg). �

3. The Schottky space over Z

In this section, we define a parameter space for marked Schottky groups of a given rank, where
the marking is given by the choice of a basis. Already for Schottky groups of rank one, one gets an
interesting construction, but most uniformization phenomena that are at the center of our interest
become apparent only when the rank is at least two.
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3.1. The space S1.
Let Γ = 〈γ〉 be a Schottky group of rank one over a valued field (k, | · |). Then, γ is conjugated in
PGL2(k) to a unique matrix of the form M(0,∞, β) with 0 < |β| < 1 (which corresponds to the
multiplication by β as an endomorphism of P1,an

k ; see Section 2.4 for the notation).
Consider the affine line A1,an

Z with coordinate Y and set

S1 := {x ∈ A1,an
Z | 0 < |Y (x)| < 1}.

With each point x ∈ S1, one can canonically associate a Schottky group of rank one

Γx := 〈M(0,∞, Y (x))〉 ⊂ PGL2(H(x)).

The condition imposed on S1 ensures that M(0,∞, Y (x)) is a loxodromic transformation of P1,an
H(x)

having 0 as attracting point and ∞ as repelling point. Given a Schottky group of rank one over Qp,
we can retrieve it as a M(0,∞, Y (x)) for a unique x ∈ S1 with H(x) = Qp. For a general valued
field (k, | · |) and an element β ∈ k such that 0 < |β| < 1, the group generated by M(0,∞, β) can be
retrieved as above from a point of S1 ×Z k. This can be seen as a consequence of Lemma 3.2.5 in
the special case where g = 1.

3.2. Construction of Sg and equivalent definitions.
In this section, we fix g > 2 and we consider the space A3g−3,an

Z and denote its coordinates by
X3, . . . , Xg, X

′
2, . . . , X

′
g, Y1, . . . , Yg. For notational convenience, we set X1 := 0, X2 := 1 and

X ′1 := ∞ (seen as morphisms from A3g−3,an
Z to P1,an

Z ). We denote by prZ : A3g−3,an
Z → M(Z) the

projection morphism. Let Ug be the open subset of A3g−3,an
Z defined by the inequalities{

0 < |Yi| < 1 for 1 6 i 6 g;

Xσi
i 6= X

σj
j for i, j ∈ {1, . . . , g} and σi, σj ∈ {∅,′ }.

For ∈ {1, . . . , g}, consider the transformations

Mi := M(Xi, X
′
i, Yi) ∈ PGL2(O(Ug)).

Definition 3.2.1. The Schottky space of rank g over Z, denoted by Sg, is the set of points x ∈ Ug
such that the subgroup Γx of PGL2(H(x)) defined by

〈M1(x),M2(x), . . . ,Mg(x)〉

is a Schottky group of rank g.

Notation 3.2.2. Recall that a Schottky group over a valued field (k, | · |) gives rise to a k-
analytic curve by means of uniformization (see in the archimedean case, and [Mum72] in the
non-archimedean case). Given x ∈ Sg, we denote by Γx the marked Schottky group of ordered basis
(M1(x),M2(x), . . . ,Mg(x)), and by Cx the H(x)-analytic curve obtained via Schottky uniformization
by Γx. The curve Cx has semi-stable reduction, and a theorem of Berkovich ([Ber90, 4.3.2]) asserts
then that the dual graph of the stable model of Cx can be canonically realized as a subset of
Cx. Such a subset, denoted by Σx, is a graph of Betti number g, called the skeleton of Cx. If
B =

(
B+
i,ε

∣∣1 ≤ i ≤ g, ε = ±1
)
is a Schottky figure adapted to a Schottky basis of Γx and F+ is the

associated “closure of a fundamental domain” (see Definition 2.1.1 and following paragraph), then
there is an isomorphism Cx ∼= F+/Γx and the skeleton Σx of the Mumford curve Cx is obtained
through pairwise identification, for every i = 1, . . . , g, of the points of the Shilov boundaries of
B+
i,1, B

+
i,−1 in the tree corresponding to the skeleton of F+.

Note that the identification of H(x) with a valued extension of H(prZ(x)) is not canonical, and to
different immersions H(prZ(x)) ↪→ H(x) one associates different Schottky groups, yielding curves Cx
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that might not be isomorphic. To lift the ambiguity from this situation one has then to consider the
points of the base-change Sg ×Z H(x), as made more precise in the following remark.

Remark 3.2.3. Let (A, ‖·‖) be a Banach ring. Starting withM(A) instead ofM(Z), one can define
a Schottky space Sg,A over A, that can be related to the Schottky space over Z in the following way.
If we denote by πA : A3g−3,an

A → A3g−3,an
Z the projection map, it follows from Remark 2.5.3 that we

have Sg,A = π−1
A (Sg). In other words, when the suitable categories and fiber products are defined,

we have Sg,A = Sg ×M(Z)M(A). Moreover, the projection map πA respects all the data: for each
x ∈ Sg,A, the group Γx is the image of Γπ(x) by the inclusion PGL2(H(π(x)) ⊆ PGL2(H(x)), the
limit set of Γπ(x) in P1,an

H(π(x)) is the preimage of the limit set of Γx in P1,an
H(x), and so on.

In the special case where A = C, we obtain a subset Sg,C of C3g−3. As one may expect, this is
a classical object that has already been closely investigated. By [Hej75, Lemma 5.11], one has a
covering map Tg,C −→ Sg,C from the Teichmüller space to the complex Schottky space. One deduces
that Sg,C is a connected subset of C3g−3.

Recall that, for ε ∈ (0, 1], we denote by aε∞ the point ofM(Z) associated with | · |ε∞ and that we
have an isomorphism H(aε∞) ' R. We will use the canonical map ρε : C3g−3 = A3g−3,an

C → A3g−3,an
R ,

where R and C are endowed with | · |ε∞.

Lemma 3.2.4. For ε ∈ (0, 1], we have Sg ∩ pr−1
Z (aε∞) = ρε(Sg,C). The set Sg ∩

(
A3g−3,an
Z

)a is a
connected open subset of A3g−3,an

Z .

Proof. By Remarks 2.5.3 and 2.5.2, ρ−1
ε (Sg ∩ pr−1

Z (aε∞)) coincides with the usual complex Schottky
space Sg,C. In other words, Sg ∩ pr−1

Z (aε∞) is the quotient of Sg,C by the complex conjugation. In
particular, it is a connected open subset of A3g−3,an

R .
Recall the homeomorphism

Φ: A3g−3,an
R × (0, 1]→

(
A3g−3,an
Z

)a
from Section 1.3. It follows from Remark 2.5.2 that it induces a bijection between

(
Sg ∩pr−1

Z (aε∞)
)
×

(0, 1] and Sa
g . As a consequence, Sa

g is connected and open, since
(
A3g−3,an
Z

)a is open in A3g−3,an
Z .

�

Let Fg be the free group of rank g with basis e1, . . . , eg. For each complete valued field k, we denote
by HomS(Fg,PGL2(k)) the set of group morphisms ϕ : Fg → PGL2(k) that satisfy the following
conditions:

(i) ϕ(e1) is loxodromic with attracting fixed point 0 and repelling fixed point ∞;
(ii) ϕ(e2) is loxodromic with attracting fixed point 1;
(iii) the image of ϕ is a Schottky group of rank g.

Each point x of Sg gives rise to an element ϕx of HomS(Fg,PGL2(H(x))) that sends ei to Mi(x).
To state a converse result, we need to introduce an equivalence relation similar to that of [Ber90, Re-

mark 1.2.2 (ii)]. We say that two elements ϕ1 ∈ HomS(Fg,PGL2(k1)) and ϕ2 ∈ HomS(Fg,PGL2(k2))
are equivalent if there exists an element ϕ ∈ HomS(Fg,PGL2(k)) and isometric embeddings k ↪→ k1

and k ↪→ k2 that make the following diagram commute:
16



PGL2(k1)

Fg
ϕ

//

ϕ2

++

ϕ1

33

PGL2(k)
s�

&&

+ �

88

PGL2(k2)

We denote by HomS(Fg,PGL2) the set of classes of this equivalence relation.

Lemma 3.2.5. The map x 7→ ϕx is a bijection between the underlying set of Sg and HomS(Fg,PGL2).

Proof. If ϕx = ϕy then H(x) = H(y) and ϕx(Fg) = ϕy(Fg) coincide as marked Schottky groups
in PGL2(H(x)). Hence x = y in Sg and x 7→ ϕx is injective. Conversely, for a valued field k

and a map ϕ ∈ HomS(Fg,PGL2(k)), we can consider the point y ∈ A3g−3,an
k given by the Koebe

coordinates of the marked Schottky group ϕ(Fg). The image of y under the canonical projection
A3g−3,an
k → A3g−3,an

Z is a point x ∈ Sg and there is an isometric embedding H(x) ↪→ k realizing ϕx
as canonical representative of the class of ϕ in HomS(Fg,PGL2). Hence x 7→ ϕx is surjective. �

Remark 3.2.6. Every marked Schottky group of rank g over a complete valued field k is conjugated
in PGL2(k) to a unique marked Schottky group with the property that its Koebe coordinates are of
the form {(0,∞, β1), (1, α′2, β2), . . . , (αg, α

′
g, βg)}. The combination of this observation with Lemma

3.2.5 implies that every Schottky group over k can be retrieved, up to conjugation, as a Γx for a
suitable point x ∈ Sg,k.

3.3. Openness of Sg.

Definition 3.3.1. Let S be an analytic space. Consider the relative affine line A1
S with coordinate Z.

For γ =

[
a b
c d

]
in PGL2(O(S)) and λ ∈ R>0, we set

D+
(γ,λ) := {x ∈ A1

S | |(cZ + d)(x)|2 6 λ|(ad− bc)(x)|}

and
D−(γ,λ) := {x ∈ A1

S | |(cZ + d)(x)|2 < λ|(ad− bc)(x)|}.
We call such sets closed and open relative twisted Ford discs respectively.

We now generalize Gerritzen’s theorem 2.5.9 to the relative setting.

Proposition 3.3.2. Let x be a non-archimedean point of Sg such that ∞ is not a limit point of Γx.
There exist an open neighbourhood W of x in Ug, an automorphism τ of Fg and λ1, . . . , λg ∈ R>0

such that, denoting
(N1, . . . , Ng) := τ · (M1, . . . ,Mg) ∈ GL2(O(Ug))

g,

the family of relative twisted Ford discs over W

(DN1,λ1 , DN−1
1 ,λ−1

1
, . . . , DNg ,λg , DN−1

g ,λ−1
g

)

is a Schottky figure adapted to the family (N1, . . . , Ng) of PGL2(O(W )).

Proof. By Theorem 2.5.9, we can find a basis (δ1, . . . , δg) of Γx and positive real numbers λ1, . . . , λg
such that the family of twisted Ford discs (Dδ1,λ1 , Dδ−1

1 ,λ−1
1
, . . . , Dδg ,λg , Dδ−1

g ,λ−1
g

) is a Schottky figure
adapted to (δ1, . . . , δg).

17



Denote by τ the automorphism of Γx sending Mi(x) to δi. Identify Fg with Γx by sending ei
to Mi(x), we get an automorphism of Fg that we still denote by τ . Set

(N1, . . . , Ng) := τ · (M1, . . . ,Mg) ∈ GL2(O(Ug))
g

and write

Ni =

(
ai bi
ci di

)
for i ∈ {1, . . . , g}. Note that the coefficients of the Ni’s are rational functions in the Xj ’s, X ′j ’s and
Yj ’s. Denote by U ′ the open subset of Ug where they are all defined.

Let V be the open subset of U ′ defined by

| tr(Ni)|2 > max(|4|, 1) | det(Ni)| for 1 6 i 6 g.

By Lemma 1.4.4, V contains x and, for each y ∈ V and each i ∈ {1, . . . , g}, the matrix Ni is
loxodromic.

Let i 6= j ∈ {1, . . . , g}. Since ∞ is not a limit point of Γx, it cannot be a fixed point of Ni(x)
or Nj(x), hence ci(x)cj(x) 6= 0. There exists a neighbourhood Wi,j of x in V such that cicj does
not vanish on Wi,j . In this case, for each y ∈Wi,j , ∞ is not a fixed point of Ni(y) or Nj(y) and, by
Lemma 2.5.6, we have

D+
Ni(y),λi

= D+

(
−di
ci

(y),

∣∣∣∣aidi − bicic2
i

(y)

∣∣∣∣1/2 λ1/2
i

)
and

D+
Nj(y),λj

= D+

−dj
cj

(y),

∣∣∣∣∣ajdj − bjcjc2
j

(y)

∣∣∣∣∣
1/2

λ
1/2
j

 .

By assumption, the discs at x are disjoint and Lemma 1.4.3 ensures that we have∣∣∣∣dici (x)− dj
cj

(x)

∣∣∣∣ > max

∣∣∣∣aidi − bicic2
i

(x)

∣∣∣∣1/2 λ1/2
i ,

∣∣∣∣∣ajdj − bjcjc2
j

(x)

∣∣∣∣∣
1/2

λ
1/2
j

 .

Since x is non-archimedean, we have max(|2(x)|, 1) = 1, hence, up to shrinking Wi,j , we may assume
that, for each y ∈W , we have∣∣∣∣dici (y)− dj

cj
(y)

∣∣∣∣ > max(|2(y)|, 1) max

∣∣∣∣aidi − bicic2
i

(y)

∣∣∣∣1/2 λ1/2
i ,

∣∣∣∣∣ajdj − bjcjc2
j

(y)

∣∣∣∣∣
1/2

λ
1/2
j

 ,

which implies that D+
Ni(y),λi

and D+
Nj(y),λj

are disjoint, by Lemma 1.4.3. Similar arguments show that,
up to shrinking Wi,j , we may ensure that the discs D+

Ni(y),λi
, D+

N−1
i (y),λ−1

i

, D+
Nj(y),λj

and D+

N−1
j (y),λ−1

j

are all disjoint.
The result now holds with W :=

⋂
i 6=jWi,j . �

Lemma 3.3.3. Let x be a non-archimedean point of Sg. The separable closure of H(prZ(x)) in H(x)
is a finite extension of H(prZ(x)). In particular, there exists an algebraic integer ω that does not
belong to H(x). If prZ(x) = a0, we may moreover assume that ω is totally real.

Proof. It is enough to prove that, for each non-archimedean complete valued field k, each integer n
and each x ∈ An,an

k , the separable closure of k in H(x) is a finite extension of k. By induction, we
may assume that n = 1. If k is trivially valued, then we can conclude by the explicit description of
the field H(x), so we may assume that this is not the case.

18



If x is a rigid point, then the result is clear. Otherwise, the point x corresponds to an absolute
value | · |x on the function field F of A1

k and H(x) is the completion of F with respect to it. The
local ring Ox being henselian, it contains the henselization of F with respect to | · |x, that is to say
the separable closure of F in H(x). In particular, this separable closure is contained in the separable
closure of F in the ring of functions of some strict affinoid neighbourhood of x, and it follows from
Noether normalization lemma that the latter is a finite extension. �

Corollary 3.3.4. Let x be a non-archimedean point of Sg. There exist an open neighbourhood W
of x in Ug, an automorphism τ of Fg and a family of closed subsets of P1

W that is a Schottky figure
adapted to τ · (M1, . . . ,Mg).

Proof. Let ω be an algebraic integer as in Lemma 3.3.3. Let K be a number field containing ω.
We will work over the Schottky space Sg,OK

overM(OK) defined in Remark 3.2.3. Denote by
πK : Sg,OK

→ Sg the projection morphism. Let xK ∈ π−1
K (x) and set U ′g := π−1

K (Ug).

Let A =

(
0 1
1 −ω

)
∈ GL2(O(U ′g)). Note that we have A(ω) = ∞ and that, for each z ∈

(U ′g)
a, A(z) ∈ GL2(R). For i ∈ {1, . . . , g}, set M∞,i := A−1MiA in PGL2(O(U ′g)). Denote

by Γ∞,xK the subgroup of PGL2(H(xK)) generated byM∞,1(xK), . . . ,M∞,g(xK). By Corollary 2.2.6
and Remark 3.2.3, ω is not a limit point of ΓxK , hence ∞ is not a limit point of Γ∞,xK . By
Proposition 3.3.2, there exists an open neighbourhood W ′ of xK in U ′g, an automorphism τ of Fg
and λ1, . . . , λg ∈ R>0 such that, denoting

(N∞,1, . . . , N∞,g) := τ · (M∞,1, . . . ,M∞,g) ∈ GL2(O(U ′g))
g,

the family of twisted isometric discs

(DN∞,1,λ1 , DN−1
∞,1,λ

−1
1
, . . . , DN∞,g ,λg , DN−1

∞,g ,λ
−1
g

)

is a Schottky figure adapted to the family (N∞,1, . . . , N∞,g) of PGL2(O(W ′)). If p(x) 6= a0, then
x belongs to the interior of the non-archimedean part of Sg and we may assume that W ′ ⊆ Sna

g .
For each i ∈ {1, . . . , g}, set Ni := AN∞,iA

−1. Note that we have

(N1, . . . , Ng) := τ · (M1, . . . ,Mg) ∈ GL2(O(U ′g))
g

and that the family (A−1(DN∞,1,λ1), . . . , A−1(DN∞,g ,λg), A−1(DN−1
∞,1,λ

−1
1

), . . . , A−1(DN−1
∞,g ,λ

−1
g

)) is a
Schottky figure adapted to the family (N1, . . . , Ng) of PGL2(O(W ′)). Set W := πK(W ′). It is an
open subset of U . For i ∈ {1, . . . , g} and ε ∈ {−1, 1}, set Bε(N ε

i ) := πK(A−1(DN∞,i,λεi
)). To prove

that the family (Bε(N ε
i ), 1 6 i 6 g, ε = ±1) is a Schottky figure adapted to the family (N1, . . . , Ng)

of PGL2(O(W )), it remains to prove that, for each y ∈ W , i ∈ {1, . . . , g} and ε ∈ {−1, 1},
B−(N ε

i ) ∩ π−1(y) is an open disc.
Let y ∈ W , i ∈ {1, . . . , g} and ε ∈ {−1, 1}. Let y′ ∈ π−1

K (y) ∩ W ′. Assume that y is non-
archimedean. The set A−1(DN∞,i,λεi

) ∩ π−1(y′) is an open disc over H(y′) that contains a fixed
point of Ni(y

′). Since Ni(y
′) is defined over H(y), its fixed points come from H(y)-rational points

by base change to H(y′) and we deduce that B−(N ε
i ) ∩ π−1(y) is an open disc. Assume that y is

archimedean. Note that, in this case, we have p(x) = a0, hence ω is totally real, by assumption. If
H(y′) = H(y), then the result holds. Otherwise, we have H(y′) = C and H(y) = R and the result
follows from the fact that A(y′) ∈ GL2(R).

�

We have now collected all the results necessary to the proof of the main theorem of this section.

Theorem 3.3.5. The Schottky space Sg is an open subset of A3g−3,an
Z .
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Proof. Let x ∈ Sg. We want to prove that there exists an open subset of A3g−3,an
Z containing x that

is contained in Sg. This follows from Lemma 3.2.4 when x is archimedean and from Corollary 3.3.4
and Lemma 2.5.4 when x is non-archimedean. �

3.4. The space of Schottky bases. Let us assume g ≥ 2 and fix a complete non-archimedean
valued field (k, | · |). We denote by SBg,k the subspace of Sg,k consisting of Schottky bases (see
Remark 3.2.3 and Definition 2.5.8 respectively for these notions).

Notation 3.4.1. Let A be a finite subset of P1,an
k (k) with at least 2 elements. For each α ∈ A, we

denote by D−(α,A) the biggest open disc with center α containing no other element of A and we
denote by pα,A its boundary point in P1,an

k .
Note that, if A contains at least 3 elements, then all the discs D−(α,A) are disjoint.

Proposition 3.4.2. Let α1, α
′
1, . . . , αg, α

′
g be distinct elements of P1,an

k (k). Set A := {α1, α
′
1, . . . , αg, α

′
g}.

Let β1, . . . , βg be elements of k with absolute values in (0, 1). For each i ∈ {1, . . . , g}, set γi :=
M(αi, α

′
i, βi) ∈ PGL2(k). The following conditions are equivalent:

(i) there exists a Schottky figure adapted to (γ1, . . . , γg);
(ii) for each i ∈ {1, . . . , g}, we have `([pαi,A pα′i,A]) < |βi|−1;
(iii) for each i, j, k ∈ {1, . . . , g} with j 6= i, k 6= i and σj , σk ∈ {∅,′ }, we have

|βi| · |[α
σj
j , α

σk
k ;αi, α

′
i]| < 1.

Proof. (i) =⇒ (ii) Let B = (B+(γεi ), 1 6 i 6 g, ε = ±1) be a Schottky figure adapted to (γ1, . . . , γg).
Let i ∈ {1, . . . , g}. Note that we have αi ∈ B+(γi) and α′i ∈ B+(γ−1

i ), hence B+(γi) ⊂ D−(αi, A)

and B+(γ−1
i ) ⊂ D−(α′i, A). It follows that the segment between the boundary points of D−(αi, A)

and D−(α′i, A) is strictly contained in the segment between the boundary points of B+(γi) and
B+(γ−1

i ). Lemma 2.4.1 then provides the desired inequality.

(ii) =⇒ (iii) Let i, j, k ∈ {1, . . . , g} with j 6= i, k 6= i and σj , σk ∈ {∅,′ }. If [α
σj
j α

σk
k ]∩ [αiα

′
i] = ∅,

then we have |[ασjj , α
σk
k ;αi, α

′
i]| = 1 and the inequality of the statement holds.

Assume that I := [α
σj
j α

σk
k ] ∩ [αiα

′
i] 6= ∅. Since α

σj
j and ασkk do not belong to the discs D−(αi, A)

and D−(α′i, A), the segment I must be contained in the segment joining the boundary points of
those two discs. It now follows from Lemma 1.5.2 that we have

max
(
|[ασjj , α

σk
k ;αi, α

′
i]|, |[α

σj
j , α

σk
k ;αi, α

′
i]|−1

)
= `(I) 6 `([pαi,A pα′i,A]) < |βi|−1.

(iii) =⇒ (i) Let i ∈ {1, . . . , g}. We will construct discs B+(γi) and B+(γ−1
i ) that lie in D−(αi, A)

and D−(α′i, A) respectively and such that γi(P1,an
k −B+(γ−1

i )) is a maximal open disc inside B−(γi)

and γ−1
i (P1,an

k −B+(γi)) is a maximal open disc inside B−(γ−1
i ). To do so, we may choose coordinates

on P1,an
k such that αi = 0 and α′i =∞. The equalities of the statement then become

|βi| ·
α
σj
j

ασkk
< 1

for j, k ∈ {1, . . . , g} with j 6= i, k 6= i and σj , σk ∈ {∅,′ }. It follows that there exists ri ∈ R>0 such
that

|βi| max(|ασjj |, j 6= i, σj ∈ {∅,′ }) < ri < min(|ασjj |, j 6= i, σj ∈ {∅,′ }).

The discs B+(γi) := D+(0, ri) and B+(γ−1
i ) := P1,an

k − D−(0, |βi|−1ri) then satisfy the required
conditions.

The family of discs (B+(γεi ), 1 6 i 6 g, ε = ±1) is a Schottky figure adapted to (γ1, . . . , γg). �

Corollary 3.4.3. The topological space SBg,k is path-connected.
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Proof. Let k′ be a complete non-trivially valued extension of k. Denote by πk′/k : A3g−3,an
k′ → A3g−3,an

k

the projection map. By Remark 3.2.3, we have Sg,k′ = π−1
k′/k(Sg,k) and, by Proposition 3.4.2,

SBg,k′ = π−1
k′/k(SBg,k). Up to replacing k by k′, we may assume that k is not trivially valued.

We will consider the affine spaces A2g−3,an
k with coordinates X3, . . . , Xg, X

′
2, . . . , X

′
g and Ag,an

k

with the coordinates Y1, . . . , Yg. We denote by π1 : A3g−3,an
k → A2g−3,an

k and π2 : A3g−3,an
k → Ag,an

k
the corresponding projections.

Let a, b ∈ SBg,k. Let V be the open subset of A2g−3,an
k consisting of the points all of whose

coordinates are distinct. It is path-connected and contains a1 := π1(a) and b1 := π1(b). Let
ϕ : [0, 1] → V be a continuous map such that ϕ(0) = a1 and ϕ(1) = b1. The continuous maps
|[Xσj

j , X
σk
k ;Xi, X

′
i]| for i, j, k ∈ {1, . . . , g} with j 6= i, k 6= i and σj , σk ∈ {∅,′ } are all bounded on

ϕ([0, 1]). Let M ∈ R>0 be a common upper bound. Since k is not trivially valued, there exists
β ∈ k∗ such that

|β| < min
(
M−1, |Yi(a)|, |Yi(b)|, 1 6 i 6 g

)
.

Let us identify π−1
1 (a1) and Ag,an

H(a1), so that a may be seen as a point in the latter space. The
point β := (β, . . . , β) of Ag,an

k canonically lifts to a point aβ of Ag,an
H(a1) and there exists a continuous

path from a to aβ in Ag,an
H(a1) along which all the |Yi|’s are non-increasing and remain in (0, 1). By

Proposition 3.4.2, the corresponding path in A3g−3,an
k stays in SBg,k. We similarly define a point bβ

in π−1
1 (b1) and a continuous path from b to bβ in SBg,k.

To prove the result, it is now enough to construct a continuous path from aβ to bβ in SBg,k.
Note that π2(aβ) = π2(bβ) = β, so that aβ and bβ identify to two points of the same fiber
π−1

2 (β) ' A2g−3,an
H(β) = A2g−3,an

k . We may now use the path defined by ϕ to go from aβ to bβ. By
construction, it stays inside SBg,k. �

Corollary 3.4.4. The set SBna
g is the subset of Una

g described by the inequalities

|Yi| · |[X
σj
j , X

σk
k ;Xi, X

′
i]| < 1

for all i, j, k ∈ {1, . . . , g} with j 6= i, k 6= i and σj , σk ∈ {∅,′ }. It is a path-connected open subset
of Sna

g .

Proof. The first part of the statement follows from Proposition 3.4.2. The fact that SBna
g is open

in Sna
g is an immediate consequence.

By Corollary 3.4.3, for each z ∈ M(Z), the fiber SBg ∩ pr−1
Z (z) is connected and contains the

point Pz defined as the unique point in the Shilov boundary of the disc defined by the inequalities
|Xi| 6 1 for 3 6 i 6 g;

|X ′i| 6 1 for 2 6 i 6 g;

|Yi| 6 1
2 for 1 6 i 6 g.

The result now follows from the continuity of the map z ∈M(Z) 7→ Pz ∈ A3g−3,an
Z . �

3.5. Stratification. We define in this section a stratification analogous to the one of Herrlich (see
[Her84, §5]).

Definition 3.5.1. A marked tree with 2g endpoints is the datum of a finite tree T with 2g leaves
and a bijection {±1, . . . ,±g} ∼−→ Leaves(T ). An isomorphism of marked trees with 2g endpoints is
a bijective graph homomorphism of trees f : T −→ T ′ that is compatible with the markings on T
and T ′. We denote by Λg the set of isomorphism classes of marked trees with 2g endpoints.

Proposition 3.5.2. The space SBna
g is a connected open subset of Sna

g .
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Proof. To show that SBna
g is connected, we partition it into a finite number of strata parametrized

by Λg. We write SBna
g = tλ∈ΛgSBg,λ, where x ∈ SBna

g is in SBg,λ if and only if the skeleton of a
fundamental domain associated to x is isomorphic to λ.
Given a marked tree with 2g endpoints and pairwise distinct elements i, j, k, ` ∈ {±1, . . . ,±g}, let
us write ij ↔ k` (resp. ij • k`) if the unique path from the vertex labelled i to the vertex labelled
j intersects in more than one point (resp. in at most one point) the unique path from the vertex
labelled k to the vertex labelled `, and the orientations of these two paths agree on their intersection.
By Lemma 1.5.2, SBg,λ is described inside SBg by the following inequalities:{

|[Xσ(i)
|i| , X

σ(j)
|j| ;X

σ(k)
|k| , X

σ(`)
|`| ]| < 1 whenever ij ↔ k` in λ

|[Xσ(i)
|i| , X

σ(j)
|j| ;X

σ(k)
|k| , X

σ(`)
|`| ]| = 1 whenever ij • k` in λ,

where the variable exponents in the cross ratios are defined by the function σ : {±1, . . . ,±g} → {∅,′ }
such that σ(n) = ∅ if n > 0 and σ(n) = ′ if n < 0. Thanks to this description, it suffices
to prove that the locus SBg,λ0 is connected, where λ0 is the star-shaped marked tree with 2g
endpoints and 2g edges. In fact, if λ, λ′ are two marked trees with 2g endpoints and λ′ can be
obtained from λ by contraction of some edges, then SBg,λ′ is in the closure of SBg,λ. Since λ0

can be obtained in this way from any marked tree with 2g endpoints, then it suffices to show
that SBg,λ0 is connected. To do this, we look at the set of equations describing SBg,λ0 inside
A3g−3,an
k . There the only conditions on the Yi is for them to be in the pointed open unit disc, so that
SBg,λ0 = {Y : 0 < |Yi| < 1} × {X,X ′ : |[Xσi

i , X
σj
j ;Xσk

k , Xσ`
` ]| = 1}. Finally, the set of equations

involving the Xi, X
′
i can be rewritten as {|Xσi

i −X
σj
j | = 1, ∀ i 6= j}, so that one can connect every

point of this space via a path to the Gauss section of the poly-disc {|Xi| ≤ 1, |X ′i| ≤ 1, ∀ i} over
M(Z)na. As a result, SBg,λ0 is the product of two connected spaces, hence is itself connected. �

4. Outer automorphisms and connectedness of Sg
4.1. The action of Out(Fg) on the Schottky space. Recall from Lemma 3.2.5 that a point of Sg
corresponds to a homomorphism in HomS(Fg,PGL2). This identification gives rise to a natural
action of Aut(Fg) on Sg by letting an element of Aut(Fg) act on the source of homomorphisms in
HomS(Fg,PGL2).
More precisely, let τ ∈ Aut(Fg), x ∈ Sg, and ϕx be the associated homomorphism of HomS(Fg,PGL2).
Then, the map ϕx ◦ τ is a group homomorphism from Fg to PGL2(H(x)). Its image, being the same
as that of ϕx, is the Schottky group Γx. Moreover, there exists a unique Möbius transformation ε
that sends the attracting and repelling fixed points of ϕx ◦ τ(e1) to 0 and ∞ respectively and the
attracting fixed point of ϕx ◦ τ(e2) to 1. Then, ε−1(ϕx ◦ τ) ε belongs to HomS(Fg,PGL2(H(x)),
hence gives rise to a point of Sg. We denote it by τx.

Definition 4.1.1. The map (τ, x) ∈ Aut(Fg)× Sg 7→ τx ∈ Sg defines an action of Aut(Fg) on Sg
that factors through Out(Fg).

We now describe the stabilizers of the points of Sg under the action of Out(Fg). The corresponding
result for rigid Schottky spaces is known (see [Ger81, Satz 3]).

Lemma 4.1.2. Let (k, | · |) be a complete valued field and and let γ be a loxodromic element of PGL2(k)
with fixed points α and β. Let ε1, ε2 ∈ PGL2(k) such that ε−1

1 γε1 = ε−1
2 γε2. Then, we have

ε−1
1 (α) = ε−1

2 (α) and ε−1
1 (β) = ε−1

2 (β).

Proof. Wemay assume that α is the attracting point of γ. Let P ∈ P1,an
k −{ε−1

1 (α), ε−1
1 (β), ε−1

2 (α), ε−1
2 (β)}.

Then, for each n ∈ Z, we have

ε−1
1 (γn(ε1(P ))) = ε−1

2 (γn(ε2(P ))).
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The left-hand side converges to ε−1
1 (α) (resp. ε−1

1 (β)) when n goes to +∞ (resp. −∞). The
right-hand side converges to ε−1

2 (α) (resp. ε−1
2 (β)) when n goes to +∞ (resp. −∞). The result

follows. �

Proposition 4.1.3. Let x ∈ Sg. The stabilizer of x under the action of Out(Fg) is isomorphic to
the quotient Γx\N(Γx), where N(Γx) denotes the normalizer of Γx in PGL2(H(x)).

Proof. Let ε ∈ N(Γx). The morphism ϕx induces an isomorphism ψx : Fg
∼−→ Γx. Since ε belongs to

the normalizer of Γx in PGL2(H(x)), the conjugation by ε in PGL2(H(x)) induces an automorphism cε
of Γx. It follows from the definitions that ψ−1

x ◦ cε ◦ ψx is an automorphism of Fg stabilizing x. We
have just constructed a map ν : N(Γx)→ StabAut(Fg)(x). It is a morphism of groups.

Let ε ∈ N(Γx). The automorphism ν(ε) is inner if, and only if, there exists w ∈ Fg such that
ν(ε) = cw, where cw denotes the automorphism defined by the conjugation by w in Fg. Note that
we have cw = ψ−1

x ◦ cψx(w) ◦ ψx. It follows that ν(ε) is inner if, and only if, there exists δ ∈ Γx such
that cε = cδ. If the latter condition holds, then, by Lemma 4.1.2, ε−1 and δ−1 coincide on all the
fixed points of the Mi(x)’s. Since g > 2, there are more than two fixed points, hence ε = δ. The
argument shows that ν induces an injective morphism ν ′ : Γx\N(Γx)→ StabOut(Fg)(x).

To conclude, it remains to prove that ν ′ is surjective. It is enough to prove that ν is surjective.
Let σ ∈ StabAut(Fg)(x). For each i ∈ {1, . . . , g}, σ(ei) is an element of Fg, that is to say a word
wi = e

ni,0

ji,0
· · · eni,ri

ji,ri
, for some ri ∈ N, ji,0, . . . , ji,ri ∈ {1, . . . , g}, ni,0, . . . , ni,ri ∈ Z. Since ϕx is a

morphism of groups, we have

Ni(x) := ϕx ◦ σ(ei) = Mji,0(x)ni,0 · · ·Mji,ri
(x)ni,ri .

In particular, Ni(x) ∈ Γx. By definition of the action, there exists ε ∈ PGL2(H(x)) such that, for each
i ∈ {1, . . . , g}, we haveMi(x) = εNi(x)ε−1. By using the words associated to the morphism σ−1, one
may express the Mj(x)’s in terms of the Ni(x)’s. It follows that the Ni(x)’s generate the group Γx,
hence ε ∈ N(Γx). Moreover, we have ν(ε) = σ. The result follows.

�

Remark 4.1.4. Let x ∈ Sg be a non-archimedean point. It was proven by Mumford [Mum72, Corollary
(4.12)] that the quotient group Γx\N(Γx) is isomorphic to the automorphism group of the curve Cx
uniformized by the Schottky group Γx. In particular, Γx\N(Γx) is a finite group when g ≥ 2. Every
automorphism of Cx restricts to an isometry of the skeleton Σx, the subgraph of Cx defined in 3.2.2.
This restriction induces an injection of the automorphism group Aut(Cx) in the group Aut(Σx) of
isometries of Σx.

Remark 4.1.5. Let x ∈ Sg be an archimedean point. In this case there is an injective homomorphism
from the quotient group Γx\N(Γx) to the group Aut(Cx), obtained by restricting the automorphisms
of the Schottky cover P1,an

C − Lx to Cx.
Proposition 4.1.6. The action of Out(Fg) on Sg is analytic and has finite stabilizers. Moreover:

• If g ≥ 3, then this action is faithful;
• If g = 2, then the element ι ∈ Out(F2) defined by ι(ei) = e−1

i for i = 1, 2 stabilizes every
point of S2, and the action of the quotient Out(F2)/〈ι〉 on S2 is faithful.

Proof. It is a classical result of Nielsen that Out(Fg) is generated by the set of four elements
{σ1, σ2, σ3, σ4} defined by:

σ1(e1) = eg, σ1(ei) = ei−1 ∀i > 1

σ2(e1) = e2, σ2(e2) = e1, σ2(ei) = ei ∀i > 2

σ3(e1) = e−1
1 , σ3(ei) = ei ∀i > 1

σ4(e2) = e−1
1 e2, σ4(ei) = ei ∀i 6= 2
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For i = 1, 2, 3 a simple computation shows that every σi acts on Sg by Möbius transformations on
the Koebe coordinates. For example, in the case of σ1, the point x of Sg with Koebe coordinates
(αi, α

′
i, βi) is sent to a point with basis

(
M(αg, α

′
g, βg),M(0,∞, β1), . . . ,M(αg−1, α

′
g−1, βg−1)

)
. To

describe the action in terms of Koebe coordinates, we need to conjugate this basis by the unique
Möbius transformation γ such that γ(αg) = 0, γ(α′g) =∞, and γ(0) = 1. This conjugation sends
the fixed points of a transformation to their images under γ, while leaving multipliers untouched.
Hence, the Koebe coordinates of σ1(x) are

σ1(αi, α
′
i, βi) =

(
γ(1), . . . , γ(αg−1), γ(∞), . . . , γ(α′g−1), βg, β1, . . . , βg−1

)
.

The cases of σ2 and σ3 are completely analogous, and so in these three cases the action is analytic.
Let us show that this is the case for σ4 as well. Denote by M := M(α?, α′?, β?) the matrix

representing the productM(0,∞, β1)−1M(1, α′2, β2). The Koebe coordinates (α?, α′?, β?) are analytic
functions in the coefficients of M by virtue of Proposition 2.4.3. Moreover, the coefficients of M are
rational functions without poles in the variables β1, α

′
2, β2 on Sg, and then analytic as well. Finally,

if we want to get a basis with 1 as attracting fixed point of the second generator we have to conjugate
every element by multiplication by 1

α? . Summarizing, we get the following expression of the action
of σ4 on Sg:

σ4(αi, α
′
i, βi) =

(α3

α?
, . . . ,

αg
α?
,
α′?

α?
,
α′3
α?
, . . . ,

α′g
α?
, β1, β

?, β3, . . . , βg
)
.

Since α?, α′?, and β? are analytic functions of the Koebe coordinates, the action of σ4, and hence of
Out(Fg), is analytic on Sg.

The finiteness of the stabilizers follows from Proposition 4.1.3 and Remarks 4.1.4 (in the non-
archimedean case) and 4.1.5 (in the archimedean case).
To prove faithfulness for g ≥ 3, it is enough to remark that for every valued field there exist Schottky
uniformized curves with trivial automorphism groups. For g = 2, the outer automorphism ι of order 2
defined by ι(ei) = e−1

i for i = 1, 2 fixes every point x ∈ S2. In fact, writing in Koebe coordinates
x = (α′2, β1, β2), the point ι(x) corresponds to the ordered basis

(
M(∞, 0, β1),M(α′2, 1, β2)

)
. Then

the conjugation of this basis by the Möbius transformation z 7→ α′2
z produces the ordered basis(

M(0,∞, β1),M(1, α′2, β2)
)
, so that ι(x) = x. The automorphism induced by ι on Cx is the

hyperelliptic involution for every x ∈ Sg. Since over every valued field there are genus 2 curves
that admit Schottky uniformization and have the hyperelliptic involution as their only nontrivial
automorphism, we can conclude that the action of the quotient Out(F2)/〈ι〉 on S2 is faithful. �

The following proposition is a consequence of several well known facts about the complex Schottky
space.

Proposition 4.1.7. Let x ∈ Sa
g be an archimedean point of the Schottky space Sg. Then there exists

a neighbourhood V of x such that, for every σ ∈ Out(Fg), the condition σ(V ) ∩ V 6= ∅ implies that
σ(x) = x.

Proof. Since the action of Out(Fg) fixes the fibers of Sg over M(Z), it is enough to show that
the condition of the theorem is satisfied for a neighbourhood V of x in the non-archimedean fiber
containing x. Recall from the discussion in Remark 3.2.3 that we have the universal covering map
Φ : Tg,C −→ Sg,C from the complex Teichmüller space to the complex Schottky space. The mapping
class group MCGg acts properly discontinuously on Tg,C ([Gar87, §8, Theorem 6]), and the action
of Out(Fg) on Sg,C comes from the realization of Out(Fg) as a subquotient of MCGg ([HS07, §5.2]).
Then there exists a neighbourhood W of Φ−1(x) such that σ(W ) ∩W 6= ∅ whenever σ is not a
stabilizer of Φ−1(x). Since Φ is an open map, then V = Φ(W ) is a neighbourhood of x with the
desired property. �
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Theorem 4.1.8. Let SBna
g be the subspace of Sna

g consisting of Schottky bases. Then,

SB = {τ ∈ Out(Fg) : τ(SBna
g ) ∩ SBna

g 6= ∅}
is a finite subset of Out(Fg).

Proof. For every point x ∈ SBna
g , let us denote by Lx ⊂ P1,an

H(x)

(
H(x)

)
the limit set of Γx, and by

TΓx ⊂ P1,an
H(x) the infinite tree defined as the skeleton of P1,an

H(x) − Lx.
1 The action of Γx on the infinite

tree TΓx is free and without inversions, and gives rise to a universal covering px : TΓx → Σx of the
skeleton of the Mumford curve uniformized by Γx.
Following Serre [Ser77, §3.1], we call representative tree of TΓx any subtree of TΓx that is a lifting
of a spanning tree of Σx via px. Equivalently, a representative tree is a connected subtree of TΓx

that has a unique vertex in any given Γx-orbit on the set of vertices of TΓx . With a representative
tree T ⊂ TΓx , we can associate a generating set of Γx as follows. Let us call ET the set of edges in
TΓx that have one endpoint in T and the other in its complement TΓx − T . Note that the set ET
consists of 2g elements.

Lemma 4.1.9. The set

GT = {γ ∈ Γx − {1} : ∃ e ∈ ET with γ(e) ∈ ET }
is of the form B ∪B−1 with B = {γ1, . . . , γg} a basis of Γx and B−1 = {γ−1

1 , . . . , γ−1
g }.

Proof. Let us choose an orientation on the tree TΓx compatible with the action of Γx, and we consider
the set B ⊂ Γx consisting of the elements γ ∈ Γx such that there exists an edge e of TΓx starting in
T and ending in γ(T ). By applying a theorem of Serre on free actions on oriented trees [Ser77, §3.3
Théorème 4′, a)], we deduce that B is a basis of Γx. By construction, the set B ∪B−1 is contained
in GT , so it suffices to show that GT ⊂ B ∪B−1 to conclude. To show this, let us pick γ ∈ GT and
e1, e2 ∈ ET , such that γ(e1) = e2. If we call vi, wi the endpoints of ei in such a way that vi ∈ T , then
v1 and v2 can not be in the same orbit, hence γ(v1) = w2 and γ(w1) = v2. As a result, w1 ∈ γ(T )
and w2 ∈ γ−1(T ). Then, depending on the orientation chosen at the beginning, either γ ∈ B or
γ ∈ B−1, as desired. �

We denote by Fx the set of representative trees of TΓx , and by Bx the set of generating sets of Γx
of the form B ∪B−1 as in the statement of Lemma 4.1.9. The function

Gx :Fx → Bx

T 7→ GT

is injective and its image consists of those generating sets B ∪B−1 such that B is a Schottky basis.
To prove this, we let B be a Schottky basis, choose a Schottky figure adapted to B and consider

the associated analytic space F+ ⊂ P1,an
H(x) as in Definition 2.1.1. Then we claim that the maximal

subtree TB of TΓx contained in F+ has a unique vertex in any Γx-orbit on the set of vertices of
TΓx , and therefore is a representative tree. To prove this, recall from 3.2.2 that the skeleton Σx is
obtained by pairwise identifying the endpoints of the intersection F+ ∩ TΓx according to the action
of Γx. In particular, F+ contains a fundamental domain for the action of Γx on P1,an

H(x) − Lx, so that
there is a vertex of TB in the orbit of v, for every vertex v of TΓx . Moreover, if ξ is an endpoint of
F+ ∩ TΓx , then the map px identifies ξ with only another endpoint of F+ ∩ TΓx , so that px(ξ) is a
point of degree 2 of Σx and hence it is not a vertex of Σx. In particular, ξ is not a vertex of TB, so
that all vertices of TB are contained in a fundamental domain for the action of Γx on P1,an

H(x) − Lx.

1Recall from [Ber90, 4.1.3] that the skeleton of an analytic curve C is defined as the subset of C consisting of those
points that do not have a neighborhood potentially isomorphic to a disc. If C is the analytification of a smooth proper
algebraic curve, its skeleton is a finite graph and this definition coincides with the one at the end of Notation 3.2.2.
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This shows that every element in the orbit of a vertex v of TB different from itself does not lie in TB ,
concluding the proof that TB is a representative tree.
Note that the endpoints of F+ ∩ TΓx lie precisely on those edges of TΓx that are in ETB , and by
construction of F+ the elements of Γx acting on these endpoints are precisely those lying in B ∪B−1.
Hence we have GTB = B ∪B−1, showing that B ∪B−1 is in the image of Gx.
Conversely, if B = {γ1, . . . , γg} is a basis of Γx and B ∪B−1 ∈ Bx can be written as Gx(T ) for some
representative tree T , one can build a Schottky figure adapted to B as follows. First one writes the
set ET as {e−g, . . . , e−1, e1, . . . , eg} in such a way that γi(e−i) = ei. Then one chooses a set of 2g

points {x−g, . . . , x−1, x1, . . . , xg} in P1,an
H(x) in such a way that x−i ∈ e−i, xi ∈ ei and γi(x−i) = xi for

every i = 1, . . . , g (here we tacitly identify an element of ET with the corresponding subset of P1,an
H(x)).

Each xi ∈ P1,an
H(x) is the Shilov boundary of a unique closed disc of P1,an

H(x) not containing T , that we
denote by B+

i . The family B =
{
B+
i , i ∈ {−g, . . . ,−1, 1, . . . , g}

}
is a Schottky figure adapted to B:

In fact, if we denote by B−i the unique connected component of P1,an
H(x) − {xi} such that T ∩B−i = ∅

and Lx ∩B−i 6= ∅, we have that B−i is a maximal open disc inside B+
i and that

B−i = γi(P1,an
H(x) −B

+
−i),

where we adopted the convention γ−i = γ−1
i . Then B is a Schottky basis, constructed in such a way

that the representative tree TB as above coincides with T .

The injectivity of Gx is proved as follows: let Gx(T1) = Gx(T2) = B ∪ B−1. By what we just
proved, B is a Schottky basis and the injectivity of Gx is equivalent to the fact that every Schottky
figure associated with B gives rise to the same representative tree TB . We can show this by contradic-
tion: suppose that two Schottky figures B1 and B2 adapted to B give rise to different representative
trees T1 and T2. Then there is a vertex v of T1 that is not a vertex of T2, and there are at least
two edges ei, ej of ET1 having v as an endpoint that are not edges of T2 nor they belong to ET2 , for
instance those edges departing from v in a direction different from the one of T2. As a result, there
is a unique connected component of TΓx − T2 that contains both ei and ej . Hence, the two closed
discs B+

i , B
+
j ∈ B1 corresponding to ei, ej are contained in a single closed disc B+ ∈ B2. This leads

to a contradiction, since every disc in a Schottky figure adapted to B contains a unique fixed point
of a unique element of B, but B+ contains at least two of them. This shows that T1 = T2.

Thanks to the injectivity of Gx, one can associate with x a unique representative tree Tx ∈ Fx,
defined as the pre-image by Gx of the generating set {M1(x), . . . ,Mg(x),M−1

1 (x), . . . ,M−1
g (x)}.

Furthermore, with the point x one can also associate the set

SBx = {τ ∈ Out(Fg) : τ(x) ∈ SBg}.
Our proof of the theorem then relies on the following lemmas.

Lemma 4.1.10. Let x ∈ SBna
g . Then SBx is a finite subset of Out(Fg).

Proof. Let us fix a vertex v ∈ Tx, and call Fx,v the subset of Fx consisting of those representative
trees that contain v. We first prove that every Schottky basis is Γx-conjugated to a unique Schottky
basis in the image Gx(Fx,v). In fact, if B is a Schottky basis, then B∪B−1 = Gx(T ) for some T ∈ Fx.
For every γ ∈ Γx, γGx(T )γ−1 is the image by Gx of the representative tree γ(T ). Since there exists
a unique γ ∈ Γx such that v ∈ γ(T ), there is a unique generating set in Gx(Fx,v) conjugated to
B ∪B−1 by an element of Γx. As a result, the function Gx realizes a bijection between the set Fx,v
and the set of Γx-conjugacy classes of generating sets of the form B ∪B−1 with B a Schottky basis
of Γx. As the former is a finite set, the latter is also finite and, in particular, the PGL2-conjugacy
classes of Schottky bases of Γx are finite.
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For every y ∈ SBna
g , let us define the subset SBx,y = {τ ∈ Out(Fg) : τ(x) = y} of SBx. If

τ1, τ2 ∈ SBx,y, then τ1τ
−1
2 (x) = x, so there is an element σ ∈ Out(Fg) in the stabilizer of x such

that τ1 = στ2. By Proposition 4.1.3, this stabilizer is finite, so the set SBx,y is finite too. We can
write the set SBx as a union

SBx =
⋃

y∈SBna
g

SBx,y.

Note that the set SBx,y is non-empty only if the Schottky basis
(
M1(y), . . . ,Mg(y)

)
is PGL2-

conjugated to τ
(
M1(x), . . . ,Mg(x)

)
. Hence, by what precedes, SBx is a finite union of finite sets

and then it is finite.
�

Given a tree T , recall that a vertex of degree one of T is called a leaf. If the set of leaves
L(T ) of T has cardinality 2g, we call leaf labeling of T a bijection between L(T ) and the set
{−g, . . . ,−1, 1, . . . , g}. Let us denote by Lg the set of pairs (T , `) where T is a finite tree with 2g
leaves and no vertices of degree 2, and ` is a leaf labeling of T . Since g is fixed, Lg is a finite set.
For a point x ∈ SBna

g , the subtree Tx ∪ ETx of TΓx has 2g leaves and no vertices of degree 2, and
can naturally be endowed with a labeling induced by the writing ETx = {e−g, . . . , e−1, e1, . . . , eg} as
in the first part of the proof. This assignment defines a map λ : SBna

g → Lg.

Lemma 4.1.11. Let x, y be two points of SBna
g such that λ(x) = λ(y). Then SBx = SBy.

Proof. Since λ(x) = λ(y), there exists an isomorphism of finite trees

ψ : Tx ∪ ETx → Ty ∪ ETy
that sends Tx to Ty and respects the leaf labelings. Consider the group isomorphism φ : Γx → Γy
such that φ(Mi(x)) = Mi(y). Then there is a unique way to extend φ-equivariantly the isomorphism
ψ to an isomorphism of infinite trees Ψ : TΓx → TΓy . Namely, for every vertex v′ ∈ TΓx , there
is a unique pair (γ, v) with γ ∈ Γx and v a vertex of Tx such that v′ = γ(v). The assignment
Ψ(v′) = φ(γ)(Ψ(v)) uniquely determines the isomorphism Ψ.
Let us fix vertices vx ∈ Tx and vy ∈ Ty such that Ψ(vx) = vy. Note that we constructed Ψ in such a
way to be equivariant, so there is a commutative diagram of the form

TΓx TΓy

Σx Σy

Ψ

px py

∼

,

where the arrow on the bottom is an isomorphism of graphs, and in particular sends spanning trees
in Σx to spanning trees in Σy. As a result, Ψ sends representative trees in TΓx to representative
trees in TΓy . In particular, Ψ restricts to a function

Ψ|Fx,vx
: Fx,vx → Fy,vy

satisfying Ψ|Fx,vx
(Tx) = Ty.

Now we consider an element τ ∈ SBx. This has a unique representative σ ∈ Aut(Fg) such that Bσ,
the Schottky basis resulting from applying σ to (M1(x), . . . ,Mg(x)), satisfies G−1

x (Bσ) ∈ Fx,vx . If
we consider the representative tree T = Ψ|Fx,vx

(
G−1
x (Bσ)

)
, we have that the generating set Gy(T )

of Γy is of the form B ∪ B−1 for some Schottky basis B of Γy. By definition, Gy(T ) consists
of those elements of Γy that act on the set ET . Note that for every vertex v ∈ TΓx , we have
Ψ
((
Mi(x)

)
(v)
)

=
(
Mi(y)

)
(Ψ(v)) thanks to the fact that Ψ is φ-equivariant. This condition ensures

that, if we set Bσ =
(
M

n1,0

j1,0
(x) · · ·Mn1,r1

j1,r1
(x), . . . ,M

ng,0

jg,0
(x) · · ·Mng,rg

jg,rg
(x)
)
, then B can be taken to be
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(
M

n1,0

j1,0
(y) · · ·Mn1,r1

j1,r1
(y), . . . ,M

ng,0

jg,0
(y) · · ·Mng,rg

jg,rg
(y)
)
, that is, τ(y) ∈ SBna

g . Hence τ is in SBy and so
SBx ⊂ SBy. The same construction applied to the isomorphism Ψ−1 shows that τ ∈ SBy implies
τ ∈ SBx, so that SBx = SBy. �

The theorem then follows from the two lemmas above: We write

SB =
⋃

x∈SBna
g

SBx =
⋃

λ(x)∈Lg

SBx,

where the second equality is given by Lemma 4.1.11. The result of Lemma 4.1.10 ensures the
finiteness of SBx for every x, and the finiteness of the set Lg allows to conclude. �

Recall that we discussed proper actions at the beginning of Section 2.3.

Corollary 4.1.12. The action of Out(Fg) on Sna
g is proper. The quotient space Out(Fg)\Sna

g is
Hausdorff and reduces locally to a quotient by a finite group.

Proof. Let x, y ∈ Sna
g . By Corollary 3.3.4, there are σx, σy ∈ Out(Fg) such that σx(x), σy(y) ∈ SBna

g .
By Corollary 3.4.4, SBna

g is open in Sna
g . It follows that Ux := σ−1

x (SBna
g ) and Uy := σ−1

y (SBna
g ) are

open neighborhoods of x and y respectively. By Theorem 4.1.8, the set

{τ ∈ Out(Fg) : τ(Ux) ∩ Uy 6= ∅} = {τ ∈ Out(Fg) : σyτσ
−1
x (SBna

g ) ∩ SBna
g 6= ∅}

is finite. It follows that the action is proper, and that Out(Fg)\Sna
g is Hausdorff.

Let us now prove the last part of the statement. Let x ∈ Sna
g . The previous result applied with

y = x ensures that there exists an open neighborhood Ux of x such that

T := {τ ∈ Out(Fg) : τ(Ux) ∩ Ux 6= ∅}

is finite. Up to shrinking Ux, we may assume that T = Stab(x) and that Ux is stable under Stab(x).
We then have a canonical isomorphism Out(Fg)\Sna

g ' Stab(x)\Sna
g . The result follows.

�

4.2. Path connectedness. We now apply the results of the previous section to show that Sg is a
connected topological space. When g = 1 this is clear, as S1 is the relative open unit disc over Z.
Let then suppose that g ≥ 2. In the archimedean case, Lemma 3.2.4 provides us with a proof that
the space Sag is path-connected, thanks to its relation to the complex Teichmüller space. This allows
to use a global argument to show the connectedness of Sg.

Theorem 4.2.1. The Schottky space Sg is path-connected.

Proof. Let x ∈ Sna
g be a non-archimedean point of the Schottky space over Z. By Corollary 3.3.4,

there is an automorphism τ ∈ Out(Fg) such that τ(x) ∈ SBna
g .

Let α3, . . . , αg, α
′
2, . . . , α

′
g ∈ C such that the degree of transcendence of the extension of Q they

generate is maximal (equal to 2g − 3). Let r1, . . . , rg ∈ (0, 1) whose images in the Q-vector space
R>0 are linearly independent. For ε ∈ (0, 1], set

σ(aε∞) := ρε(α3, . . . , αg, α
′
2, . . . , α

′
g, r

1/ε
1 , . . . , r1/ε

g ) ∈ pr−1
Z (aε)

(see Section 1.3 for this notation). For each a ∈ M(Z)na, denote by σ(a) the unique point in the
Shilov boundary of the disc inside pr−1

Z (a) ' A3g−3
H(a) defined by the inequalities

|Xi| 6 1 for 3 6 i 6 g;

|X ′i| 6 1 for 2 6 i 6 g;

|Yi| 6 ri for 1 6 i 6 g.
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By comparing the limit of σ(aε∞) for ε → 0 with the non-archimedean valuation σ(a0) over the
central point (cf. Examples 1.3.1 and 1.3.2), one shows that the map

σ : a ∈M(Z) 7→ σ(a) ∈ A3g−3,an
Z

is a continuous section of the projection morphism prZ : A3g−3,an
Z →M(Z). By Corollary 3.4.4, σ(a0)

belongs to SBg and to the same path-connected component in Sg as τ(x).
Since Sg is open, by Theorem 3.3.5, we deduce that σ(aε∞) belongs to Sg for ε ∈ (0, 1] small enough.

In particular, τ(x) belongs to the same path-connected component of Sg as Sa
g . By Proposition 4.1.6,

τ−1 acts continuously on Sg, hence x belongs to the same path-connected component of Sg as Sa
g .

The result now follows from the path-connectedness of the latter.
�

5. Schottky uniformization for families of curves

5.1. The universal Mumford curve over Z.

Definition 5.1.1. We call universal Schottky group the following subgroup of PGL2(O(Sg)):

Gg := 〈M(0,∞, Y1),M(1, X ′2, Y2), . . . ,M(Xg, X
′
g, Yg)〉.

For x ∈ Sg, we denote by Lx ⊆ π−1(x) ' P1,an
H(x) the limit set of Γx. We call limit set of Gg the set

Lg :=
⋃
x∈Sg

Lx ⊆ P1
Sg .

We set
Ωg := P1

Sg − Lg.

Theorem 5.1.2. The limit set Lg of Gg is a closed subset of P1
Sg and the action of Gg on its

complement Ωg is free and proper.

Proof. It is enough to find a covering of Sg by open subsets U such that Lg ∩ π−1(U) is a closed
subset of P1

U and the action of Gg on Ωg ∩ π−1(U) is free and proper.
The result then follows from Corollary 3.3.4 and Proposition 2.3.2. �

It follows from the theorem that the quotient

Xg := Ωg/Gg

makes sense as an analytic space over Z. We call it the universal Mumford curve over Z.
To summarize, we have a commutative diagram in the category of analytic spaces over Z:

Ωg

Cg

Sg

π

ϕ

ψ

where ϕ is a local isomorphism and ψ is proper and smooth of relative dimension 1.
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5.2. Moduli spaces of Mumford curves. The existence of the universal Mumford curve Xg raises
the question of the existence of a moduli space of Mumford curves and its connections with the
moduli space of stable curves. Over a non-archimedean fiber this space is obtained as the quotient of
Sg by the action of Out(Fg) described in section 4.1 known in the rigid context by work of Gerritzen
and Herrlich. Over an archimedean fiber, the quotient of Sg

Let x be a non-archimedean point ofM(Z), and consider the fiber Sxg over x of the Schottky space.
We denote by Mumfxg the quotient of Sxg by the continuous action of Out(Fg) defined in 4.1.1.2

Since any element of Out(Fg) acts on the markings but does not affect the conjugacy class of the
Schottky group, each point y ∈ Mumfxg corresponds to a unique conjugacy class of a Schottky group
Γy ⊂ PGL2(H(y)). Moreover, by [Mum72, Corollary (4.11)], the isomorphism class of a Mumford
curve over a non-archimedean field determines the conjugacy class in PGL2 of its Schottky group.
In conclusion, the points of Mumfxg correspond to isomorphism classes of Mumford curves of genus g
defined over valued extensions of

(
H(x), | · |x

)
.

One can show that the Schottky uniformization
(
P1,an
H(y)−Ly

)
→ Cy restricts to a universal cover of

Σy. Via this restriction, the topological fundamental group π1(Σy) is identified with the fundamental
group π1(Cy), that is, the Schottky group Γy.

5.2.1. Relationship with geometric group theory and tropical moduli. The existence of a faithful
action of Out(Fg) on Sg with finite stabilizers is reminescent of Culler-Vogtmann definition of the
outer space in the context of geometric group theory, as introduced in their seminal paper [CV86].
This is not a coincidence, and in this section we show that we can indeed relate the topology of Sg
with that of the outer space.

Let us recall the definition of the Culler-Vogtmann outer space. We fix g ≥ 2 and an abstract
graph Rg with one vertex and g edges, identifying its fundamental group π1(Rg) with Fg. A finite
connected graph G is said to be stable if all its vertices have degree ≥ 3. A marking on a stable graph
G of Betti number g is a homotopy equivalence m : Rg → G or, equivalently, the choice of a group
isomorphism between Fg and the fundamental group π1(G). Two pairs (G,m) and (G′,m′) each
consisting of a stable metric graph and a marking are equivalent if there is an isometry s : G→ G′

such that s ◦m is homotopic to m′. For a given marked graph (G,m), the isomorphism Fg ∼= π1(G)
determines an action of Fg on the universal cover T of G, a tree naturally endowed with a metric,
denoted by dT . The translation length function of (G,m) is the function `G : Fg → R associating
to any σ ∈ Fg the quantity `G(σ) := minx∈T {dT (σ(x), x)}. Let CVg denote the set of equivalence
classes of stable marked graphs endowed with a metric such that the sum of edge lengths is unitary,
and let C denote the set of conjugacy classes in Fg. The rule associating with a marked tree its
translation length function defines an embedding CVg ↪→ RC into the infinite dimensional real vector
space RC . Thanks to this fact, CVg inherits a topology from the product topology on RC . The
topological space so obtained is called the Culler-Vogtmann outer space, and it is also denoted by
CVg.

The original definition of the outer space can be found in [CV86, §0], where more details about
the length functions and the topology of the outer space are given. In what follows, it will be useful
to drop the condition that the marked graphs have unitary sum of edge lengths. We will then denote
by CV ′g the unprojectivized outer space CVg×R>0, which parametrizes marked graphs with arbitrary
edge lengths. There is a natural continuous action of Out(Fg) on CVg, which extends to CV ′g using
the trivial action on the factor R>0. The quotient space CV ′g/Out(Fg) has a canonical injection in
the moduli space of abstract weighted tropical curves M trop

g , whose image is given by those tropical

2As per Jerome suggestion, define this quotient analytically. Then define the quotient over Z topologically, saying
that one hopes to be able to put an analytic structure over it.
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curves that have weight zero at every vertex. The induced map CV ′g → M trop
g is continuous and

corresponds to forgetting the marking on a given metric graph. For more details about equivalent
definitions of M trop

g and its properties, we refer to [BMV11, §3], while a comparison between CVg
and M trop

g is discussed in [Cap13, §5.2].
An isomorphism of Mumford curves induces an isometry between their skeletons. This allows to

define a continuous function Mumfxg →M trop
g sending (the class of) a Mumford curve in (the class

of) its skeleton.

Theorem 5.2.1. Let Sxg be the fiber over x of the Schottky space. Then there is a continuous
surjective function

φ : Sxg −→ CV ′g ×Mtrop
g

Mumfxg .

Proof. Let us consider the following:
• The continuous function φ1 : Sxg → Mumfxg given by the quotient by the action of Out(Fg).
Continuity is a corollary of Proposition 4.1.6;
• The continuous function φ2 : Sxg → CV ′g given by assigning to each y ∈ Sxg the metric graph
corresponding to the skeleton Σy of the Mumford curve Cy and the marking as follows: recall
from Lemma 3.2.5 that the point y can be identified with the conjugacy class of a morphism
ϕy : Fg ↪→ PGL2(H(y)), whose image is the fundamental group π1(Cy), and associate with y
the marking corresponding to the isomorphism Fg ∼= Γy induced by ϕy. To prove continuity
for φ2, we prove that the composite function Sxg → RC is continuous. This amounts to
prove that the following: if σ ∈ Aut(Fg) is defined by σ(ei) = e

ni,0

ji,0
· · · eni,ri

ji,ri
, for some ri ∈ N,

ji,0, . . . , ji,ri ∈ {1, . . . , g}, ni,0, . . . , ni,ri ∈ Z, the assignment

y 7→ `Σy(Mji,0(y)ni,0 · · ·Mji,ri
(y)ni,ri )

defines a continuous function L : Sxg → R. By Lemma 2.4.1, the length `Σy(M) for
M ∈ Γy coincides with |β|−1, where β is the multiplier of M . The result then follows from
Proposition 2.4.3, that ensures that the multiplier of the element Mji,0(y)ni,0 · · ·Mji,ri

(y)ni,ri

is a continuous function in the Koebe coordinates of y.
The function φ2 is Out(Fg)-equivariant, and then agrees with φ1 onM trop

g . By the universal property
of the fiber product, the pair (φ1, φ2) defines a continuous function

φ : Sxg −→ CV ′g ×Mtrop
g

Mumfxg .

We now prove that the function φ is surjective. Let
(
[G,m], [C]

)
∈ CV ′g ×Mtrop

g
Mumfxg be a pair

consisting of an equivalence class of a marked graph and an isomorphism class of a Mumford curve of
genus g, such that the graph G is isometric to the skeleton of C. We fix an isometry between G and
the skeleton of C, inducing an isomorphism j : π1(G)

∼−→ π1(C). Let us denote by y the point of Sxg
whose underlying Schottky group is π1(C), with marking given by the image of the basis of Fg under

the composition of isomorphisms Fg
m−→ π1(G)

j−→ π1(C). Then φ1(y) = [C] and φ2(y) = [G,m].
Hence φ is surjective. �

Remark 5.2.2. In the proof of the surjectivity of the continuous function φ above, a different choice
of isometry j between G and the fundamental group π1(C) might determine a different preimage
in Sxg of the pair

(
[G,m], [C]

)
. For example, when G is a rose with g loops all of the same length,

a permutation of the loops corresponds to a permutation of the basis {γ1, . . . , γg} of the Schottky
group π1(C). In most cases the element of Out(Fg) corresponding to such a permutation does not
stabilize a point in Sxg , for instance when two distinct elements γi 6= γj have distinct multipliers
βi 6= βj . This shows in particular that the function φ is not injective.
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Remark 5.2.3. In [Uli20], Ulirsch constructs a non-archimedean analogue of Teichmüller space T g,
using the tropical Teichmüller space that Chan, Melo, and Viviani introduced in [CMV13] and
tools from logarithmic geometry. The space T g is a Deligne-Mumford analytic stack over a non-
archimedean algebraically closed field k whose points morally correspond to pairs (C, φ) consisting of
a stable projective curve C over a valued extension of k and an isomorphism φ : πtop

1 (Can) ∼= Fb(C),
where b(C) is the first Betti number of Can. When restricting this construction on the locus of
Mumford curve, one retrieves a space T Mum

g , and a corollary of Ulirsch’s construction is the realization
of CVg as a strong deformation retract of T Mum

g . Moreover, the fibered product CV ′g ×Mtrop
g

Mumfxg
is identified (after a suitable base-change to an algebraically closed field) with the locus of Mumford
curves inside the coarse moduli space of T g. As a result, Theorem 5.2.1 and Remark 5.2.2 clarify the
relationship between non-archimedean fibers of the Schottky space Sg over Z and Ulirsch’s T Mum

g .
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