### Galois descent for semi-affinoid analytic spaces

#### Daniele Turchetti

Laboratoire de Mathématiques Nicolas Oresme Université de Caen

XXX<sup>emes</sup> Journées Arithmétiques Caen – July 6, 2017 Arithmetic motivation







K (complete) discretely valued field,  $\mathcal{O}_{K}$ ,  $\widetilde{K}$ ,  $\pi_{K}$ 

C smooth, proper, geometrically irreducible curve over K

K (complete) discretely valued field,  $\mathcal{O}_{K}$ ,  $\widetilde{K}$ ,  $\pi_{K}$ 

C smooth, proper, geometrically irreducible curve over K

Theorem (Deligne - Mumford, 1969)

There exists a finite extension L|K such that  $C_L$  has a stable model.

In particular,  $C_L$  has a semi-stable model.

K (complete) discretely valued field,  $\mathcal{O}_{K}$ ,  $\widetilde{K}$ ,  $\pi_{K}$ 

C smooth, proper, geometrically irreducible curve over K

Theorem (Deligne – Mumford, 1969)

There exists a finite extension L|K such that  $C_L$  has a stable model.

In particular,  $C_L$  has a semi-stable model.

Intuition (Bosch - Lütkebohmert, 1985)

 $C_L$  has a semi-stable model if and only if  $C_L^{an}$  can be "decomposed" into a union of open discs and a finite number of annuli.

# Berkovich analytification

Let k be a field which is complete for a nonarchimedean norm  $|\cdot|$  (e.g.  $k = \mathbb{Q}_p, \mathbb{C}_p, \mathbb{F}_p((t)), \mathbb{C}((t))$ , any trivially valued field, ...).

Definition

Let  $X = \operatorname{Spec}(A)$  be an affine k-scheme.  $X^{\operatorname{an}} := \{ || \cdot || : A \longrightarrow \mathbb{R}_{\geq 0} \text{ multiplicative semi-norms } : || \cdot ||_{k} = | \cdot | \}.$ 

$$\mathsf{Ex.} \ \mathbb{A}_{\mathbb{C}_{\rho}}^{1,\mathrm{an}} := \{ || \cdot || : \mathbb{C}_{\rho}[\mathcal{T}] \longrightarrow \mathbb{R}_{\geq 0} \dots \} \rightsquigarrow \mathbb{P}_{\mathbb{C}_{\rho}}^{1,\mathrm{an}} = \mathbb{A}_{\mathbb{C}_{\rho}}^{1,\mathrm{an}} \cup \{\infty\}.$$



A K-analytic space V is said to be:

- an open K-disc if  $V \cong \{x \in \mathbb{A}_{K}^{1, \mathrm{an}} : x(T) < r\}$  for some  $r \in |\mathcal{K}^{\times}|$
- an open K-annulus if  $V \cong \{x \in \mathbb{A}^{1,an}_{K} : r_1 < x(T) < r_2\}$  for some  $r_1, r_2 \in |K^{\times}|$

(analogue definitions for closed K-discs and K-annuli).

A K-analytic space V is said to be:

- an open K-disc if  $V \cong \{x \in \mathbb{A}_{K}^{1, \mathrm{an}} : x(T) < r\}$  for some  $r \in |\mathcal{K}^{\times}|$
- an open K-annulus if  $V \cong \{x \in \mathbb{A}^{1,an}_{K} : r_1 < x(T) < r_2\}$  for some  $r_1, r_2 \in |K^{\times}|$

(analogue definitions for closed K-discs and K-annuli).

Question

Let V be a K-analytic space, and L|K a finite extension such that  $V_L$  is a L-disc (resp. a L-annulus). Is V a K-disc (resp. a K-annulus) ?

Easy answer: NO,

A K-analytic space V is said to be:

- an open K-disc if  $V \cong \{x \in \mathbb{A}_{K}^{1, \mathrm{an}} : x(T) < r\}$  for some  $r \in |\mathcal{K}^{\times}|$
- an open K-annulus if  $V \cong \{x \in \mathbb{A}^{1,an}_{K} : r_1 < x(T) < r_2\}$  for some  $r_1, r_2 \in |K^{\times}|$

(analogue definitions for closed K-discs and K-annuli).

Question

Let V be a K-analytic space, and L|K a finite extension such that  $V_L$  is a L-disc (resp. a L-annulus). Is V a K-disc (resp. a K-annulus) ?

Easy answer: NO,

• if V is a fractional disc (resp. a fractional annulus)

A K-analytic space V is said to be:

- an open K-disc if  $V \cong \{x \in \mathbb{A}_{K}^{1, \text{an}} : x(T) < r\}$  for some  $r \in |K^{\times}|$
- an open K-annulus if  $V \cong \{x \in \mathbb{A}^{1,an}_{K} : r_1 < x(T) < r_2\}$  for some  $r_1, r_2 \in |K^{\times}|$

(analogue definitions for closed K-discs and K-annuli).

#### Question

Let V be a K-analytic space, and L|K a finite extension such that  $V_L$  is a L-disc (resp. a L-annulus). Is V a K-disc (resp. a K-annulus) ?

Easy answer: NO,

- if V is a fractional disc (resp. a fractional annulus)
- if V is the subset of  $\mathbb{A}^{1,\mathrm{an}}_{\mathbb{Q}_p}$  defined by  $|T^p p| < |p|$  and  $L = \mathbb{Q}_p(p^{1/p})$

A K-analytic space V is said to be:

- an open K-disc if  $V \cong \{x \in \mathbb{A}_{K}^{1, \text{an}} : x(T) < r\}$  for some  $r \in |K^{\times}|$
- an open K-annulus if  $V \cong \{x \in \mathbb{A}^{1,an}_{K} : r_1 < x(T) < r_2\}$  for some  $r_1, r_2 \in |K^{\times}|$

(analogue definitions for closed K-discs and K-annuli).

#### Question

Let V be a K-analytic space, and L|K a finite extension such that  $V_L$  is a L-disc (resp. a L-annulus). Is V a K-disc (resp. a K-annulus) ?

Easy answer: NO,

- if V is a fractional disc (resp. a fractional annulus)
- if V is the subset of  $\mathbb{A}^{1,\mathrm{an}}_{\mathbb{Q}_p}$  defined by  $|T^p p| < |p|$  and  $L = \mathbb{Q}_p(p^{1/p})$

However, if L|K is tamely ramified,  $V_L$  disc  $\implies V$  fractional disc (Ducros 2013, T. Schmidt 2015).

# The main theorem

#### Theorem (Fantini – T., 2017)

Let L|K be a finite Galois extension of discretely valued fields such that  $\operatorname{char}(\widetilde{K}) \not| [L:K]$ , and let X be a K-analytic space.

- If X<sub>L</sub> is a (open, closed, or semi-open) L-annulus, and Gal(L|K) fixes the branches, then X is a (open, closed, or semi-open) fractional annulus;
- If X<sub>L</sub> is a (open or closed) L-annulus, and Gal(L|K) switches the branches, then we can classify up to isomorphisms the (finite) possibilities for X.

# The main theorem

### Theorem (Fantini – T., 2017)

Let L|K be a finite Galois extension of discretely valued fields such that  $\operatorname{char}(\widetilde{K}) \not| [L:K]$ , and let X be a K-analytic space.

- If X<sub>L</sub> is a (open, closed, or semi-open) L-annulus, and Gal(L|K) fixes the branches, then X is a (open, closed, or semi-open) fractional annulus;
- If X<sub>L</sub> is a (open or closed) L-annulus, and Gal(L|K) switches the branches, then we can classify up to isomorphisms the (finite) possibilities for X.

#### Elements of proof.

- Theory of semi-affinoid analytic spaces
- Representability of Weil restriction and G-fixed locus functors (in the category of semi-affinoid spaces)
- Linearization theorems for finite order automorphisms

#### Definition

A topological algebra  $\mathcal{A}$  over  $\mathcal{O}_{\mathcal{K}}$  is called special if it is a noetherian adic ring, with an ideal of definition J such that  $\mathcal{A}/J$  is of finite type over  $\widetilde{\mathcal{K}}$ .

A K-analytic space is called <u>semi-affinoid</u> if it is the "generic fiber" of an affine special formal scheme.

Concretely,  $\mathcal{A} \cong \mathcal{O}_{\mathcal{K}}\{X_1, \ldots, X_r\}[[Y_1, \ldots, Y_s]]/I.$ 

#### Example

A K-open disc is the "generic fiber" of  $\mathcal{O}_{K}[[Y]]$ 

A K-open annulus of modulus e is the "generic fiber" of  $\frac{\mathcal{O}_{K}[[Y_{1},Y_{2}]]}{Y_{1}Y_{2}-\pi_{k}^{e}}$ 

## A non-trivial form of annulus

Let K be such that  $char(\widetilde{K}) \neq 2$ 

Let  $L = K(\sqrt{a})$  for  $a \in \mathcal{O}_K^{\times}$ 

Let V be the generic fiber of  $\operatorname{Spf}\left(\frac{\mathcal{O}_{K}[[Y_{1},Y_{2}]]}{Y_{1}^{2}-aY_{2}^{2}-\pi_{K}^{e}}\right)$ 

Then,  $V_L$  is a L-annulus of modulus 2e, but V is not a fractional annulus.

#### Remark

It follows from the main theorem that this is the only possibility outside the case of V fractional annulus.

### Further perspectives: Hurwitz trees

Linearization in the wildly ramified case is not an option (e.g. the automorphism of  $\mathbb{Z}_3[\zeta_3][[T]]$  defined by  $\sigma(T) = \frac{T-3}{T-2}$ )

Nevertheless, we have Hurwitz trees, that classify automorphisms of order p of discs and annuli in characteristic (0, p), according to their ramification (studied by Henrio, Brewis–Wewers, T., Temkin, ...)

### Further perspectives: Hurwitz trees

Linearization in the wildly ramified case is not an option (e.g. the automorphism of  $\mathbb{Z}_3[\zeta_3][[T]]$  defined by  $\sigma(T) = \frac{T-3}{T-2}$ )

Nevertheless, we have Hurwitz trees, that classify automorphisms of order p of discs and annuli in characteristic (0, p), according to their ramification (studied by Henrio, Brewis–Wewers, T., Temkin, ...)



#### Hope

Use Hurwitz trees to generalize the Main Theorem and give applications to wild monodromy of arithmetic curves.

Thank you!