DALHOUSIE MATHEMATICS COLLOQUIUM

Friday August 17, 2 pm, Chase 319

Speaker: Safoura Zadeh (Institute of Mathematics, Polish Academy of Sciences)

Disjointness preserving maps and noncommutative structures

Characterizing maps between various spaces has a long history dating back to the works of Cauchy, D'alembert and many others. Modern perspective on such problems starts with the work of S. Banach who gave a description of linear norm preserving operators on the $L^p[0,1]$ spaces for $1 \leq p < \infty$, $p \neq 2$. This was subsequently generalized by Lamperti to include L^p -spaces with $0 , <math>p \neq 2$ and later on, by Parrot and Strichartz, independently, to the convolution L^p -algebras.

The purpose of this talk to is to discuss non-commutative analogs of such results. The crucial property of isometries that helped Lamperti (and Yeadon in the non-comunative setting) to describe isometries between L^p -spaces is being "disjointness preserving".

I will introduce the concept of "disjointness preserving maps" and discuss some of its applications to the study of maps between L^p -spaces, Beurling convolution L^p algebras and noncommutative L^p spaces.