SIMPLICIAL TREES: PROPERTIES AND APPLICATIONS

by: Sara Faridi

faridi@math.uqam.ca

This talk focuses on properties of simplicial trees. The basic idea is to study a square-free monomial ideal by considering it as the facet ideal of a simplicial complex. We review this construction, and compare it with that in Stanley-Reisner Theory. We introduce a special class of simplicial complexes called "simplicial trees"; this definition generalizes the concept of a tree from graph theory. We then focus on simplicial trees, and discuss their Cohen-Macaulay properties. In particular, we show that the facet ideal of a simplicial tree is sequentially Cohen-Macaulay (following a definition of Richard Stanley), and if this ideal is equidimensional, it will have a Cohen-Macaulay quotient. We also discuss further problems in facet ideal theory.

1 Facet ideals and relations to Stanley-Reisner theory

Definition 1.1 ([F1]). Let Δ be a simplicial complex with vertex set $\{x_1, \ldots, x_n\}$, and let k be a field. We define the *facet ideal of* Δ to be the square-free monomial ideal $\mathcal{F}(\Delta) = k[x_1, \ldots, x_n]$, where each generator is the product of the vertices of a facet (a *facet* is a maximal face of a simplicial complex).

Example 1.2. If Δ is the simplicial complex $\langle xyz, yzu, uv \rangle$ drawn below, then $\mathcal{F}(\Delta) = (xyz, yzu, uv)$ is its facet ideal.

For simplicity, we do not distinguish in the notation used for a facet F and the monomial that is the product of the vertices of F. It is easy to see that there is a one-to-one correspondence between square-free monomial ideals and simplicial complexes via this construction.

Definition 1.3. A subset A of the vertex set of Δ is called a *vertex covering of* Δ if every facet of Δ intersects A. If A is a minimal element of the set of vertex covers of Δ it is called a *minimal vertex cover*.

Note that A is a (minimal) vertex cover of $\Delta \Leftrightarrow$ the ideal generated by A is a (minimal) prime of $\mathcal{F}(\Delta)$.

Example 1.4. If Δ is the simplicial complex in Example 1.2, then the vertex covers of Δ (or the generators of the primes of $\mathcal{F}(\Delta)$) are listed below. The first five vertex covers (highlighted in bold) are the minimal vertex covers of Δ .

 $\{\mathbf{x}, \mathbf{u}\}, \{\mathbf{y}, \mathbf{u}\}, \{\mathbf{y}, \mathbf{v}\}, \{\mathbf{z}, \mathbf{u}\}, \{\mathbf{z}, \mathbf{v}\}, \{x, y, u\}, \{x, z, u\}, \{x, y, v\}, \dots$

We now construct a new simplicial complex using the minimal vertex covers of a given simplicial complex Δ .

Definition 1.5 ([F3]). Given a simplicial complex Δ , the simplicial complex Δ_M called the *cover* complex of Δ , is the simplicial complex whose facets are the minimal vertex covers of Δ . We say that Δ is unmixed if all of its minimal vertex covers have the same cardinality (i.e., if Δ_M is pure).

Example 1.6. The simplicial complex $\Delta = \langle xyz, yzu, uv \rangle$ in Example 1.2 is unmixed, as $\Delta_M = \langle xu, yu, yv, zu, zv \rangle$ is pure.

Proposition 1.7 ([F3]). The simplicial complex Δ_M is a dual of Δ ; i.e. $\Delta_{MM} = \Delta$.

We now focus on some basic definitions from Stanley-Reisner theory.

Definition 1.8 ([S]). If Δ is a simplicial complex, the *Stanley-Reisner ideal* or *non-face ideal* $\mathcal{N}(\Delta)$ of Δ is a square-free monomial ideal such that $F \in \Delta$ if and only if the product of the vertices of F is not in $\mathcal{N}(\Delta)$.

Definition 1.9. The simplicial complex $\Delta^{\vee} = \{F \subset V(\Delta) \mid V(\Delta) \setminus F \notin \Delta\}$ is the Alexander dual of Δ .

Note that $\Delta^{\vee\vee} = \Delta$.

Proposition 1.10 ([F3]). If for two simplicial complexes Δ and Γ we have $\mathcal{N}(\Gamma) = \mathcal{F}(\Delta)$, then $\mathcal{N}(\Gamma^{\vee}) = \mathcal{F}(\Delta_M)$.

The following diagram clarifies Proposition 1.10.

2 Simplicial Trees

Considering simplicial complexes as higher dimensional graphs, one can define the notion of a *tree* which generalizes the same notion from graph theory.

Definition 2.1 ([F1]). A facet F of a simplicial complex is called a **leaf** if either F is the only facet of Δ , or for some facet $G \in \Delta \setminus \langle F \rangle$ we have $F \cap \Delta \setminus \langle F \rangle \subseteq G$.

Example 2.2. Let $\Delta = \langle xyz, yzu, zuv \rangle$. Then F = xyz is a leaf, but H = yzu is not, as one can see in the picture below.

Definition 2.3 ([F1]). A connected simplicial complex Δ is a **tree** if every nonempty subcollection of Δ (that is a subcomplex of Δ whose facets are also facets of Δ) has a leaf.

Example 2.4. The simplicial complexes in examples 1.2 and 2.2 are both trees, but the one below is not.

Properties of trees: If $\mathcal{F}(\Delta) \subseteq R = k[x_1, \dots, x_n]$ is the facet ideal of a simplicial tree Δ , then

1. $\mathcal{F}(\Delta)$ satisfies Sliding Depth condition ([F1]).

This property puts bounds on the depths of the Koszul homology modules of $\mathcal{F}(\Delta)$. Sliding Depth results in:

- 2. $\mathcal{F}(\Delta)$ has a normal and Cohen-Macaulay Rees ring.
- 3. Trees are Strongly Cohen-Macaulay; i.e., if $R/\mathcal{F}(\Delta)$ is Cohen-Macaulay, then all Koszul homology modules of $\mathcal{F}(\Delta)$ are Cohen-Macaulay.

These results were proved in the case of graphs in [SVV] and were generalized to simplicial complexes in [F1]. In fact, simplicial trees were defined this way so that they satisfied Sliding Depth condition. Later, it turned out that they also satisfy the following ([F2]):

4. (König's Theorem generalized to simplicial trees): if the minimum of the cardinalities of the minimal vertex covers of Δ is r, then Δ has a collection of r pairwise disjoint facets.

The last fact tells us much about the combinatorial structure of trees, and allows us to extend a result of Villarreal from graphs to simplicial complexes ([F2]):

5. $R/\mathcal{F}(\Delta)$ is Cohen-Macaulay $\iff \Delta$ is unmixed.

This last statement is stated in a much stronger language in [F2]: For a tree to be unmixed it has to have a specific combinatorial structure, namely it has to be *grafted* (see [F2] for a detailed description of grafting), and one can show that any grafted simplicial complex (not necessarily a tree) is Cohen-Macaulay ([F2]).

But what about a simplicial tree that is not unmixed? We can show that in general ([F3]):

6. $\mathcal{F}(\Delta)$ is a sequentially Cohen-Macaulay ideal.

A square-free monomial ideal I is Sequentially Cohen-Macaulay if for every i, the pure idimensional subcomplex of the non-face complex Δ_N of I is Cohen-Macaulay ([S], [D]).

From the dualities discussed in Section 1 it easily follows that $\mathcal{F}(\Delta)$ being Sequentially Cohen-Macaulay is equivalent to $\mathcal{F}(\Delta_M)$ being *componentwise linear*: this means that every homogeneous component of $\mathcal{F}(\Delta_M)$ (that is every ideal that is generated by all square-free monomials in $\mathcal{F}(\Delta_M)$ of the same degree) has a linear resolution. Componentwise linear ideals were introduced in [HH] and the equivalence mentioned above was proved there in terms of Alexander Duality.

More is true: if Δ is a tree, then every homogeneous component of $\mathcal{F}(\Delta_M)$ has linear quotients. This property (due to [HT]), not only implies that the component has a linear resolution, but also implies the following ([F3]):

7. If $R/\mathcal{F}(\Delta)$ is Cohen-Macaulay, and Γ is a simplicial complex such that $\mathcal{N}(\Gamma) = \mathcal{F}(\Delta)$, then Γ is shellable.

References

- [D] Duval, A.M. Algebraic shifting and sequentially Cohen-Macaulay simplicial complexes, Electron. J. Combin. 3 (1996), no. 1, Research Paper 21.
- [F1] Faridi, S. The facet ideal of a simplicial complex, Manuscripta Mathematica 109 (2002), 159-174.
- [F2] Faridi, S. Cohen-Macaulay properties of square-free monomial ideals, Preprint.
- [F3] Faridi, S. Simplicial trees are sequentially Cohen-Macaulay, Preprint.
- [HH] Herzog, J., Hibi, T. Componentwise linear ideals, Nagoya Math. J. 153 (1999), 141–153.
- [HT] Herzog, J., Takayama, Y. Resolutions by mapping cones, The Roos Festschrift volume, 2. Homology Homotopy Appl. 4 (2002), no. 2, part 2, 277–294 (electronic).
- [S] Stanley, R.P. Combinatorics and commutative algebra, Second edition. Progress in Mathematics, 41.
 Birkhuser Boston, Inc., Boston, MA, 1996. x+164 pp. ISBN: 0-8176-3836-9
- [SVV] Simis A., Vasconcelos W., Villarreal R., On the ideal theory of graphs, J. Algebra 167 (1994), no. 2, 389–416.
- [V] Villarreal R., Monomial algebras, Monographs and Textbooks in Pure and Applied Mathematics, 238. Marcel Dekker, Inc., New York, 2001.