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This talk focuses on properties of simplicial trees. The basic idea is to study a square-free mono-
mial ideal by considering it as the facet ideal of a simplicial complex. We review this construction,
and compare it with that in Stanley-Reisner Theory. We introduce a special class of simplicial com-
plexes called “simplicial trees”; this definition generalizes the concept of a tree from graph theory.
We then focus on simplicial trees, and discuss their Cohen-Macaulay properties. In particular, we
show that the facet ideal of a simplicial tree is sequentially Cohen-Macaulay (following a definition
of Richard Stanley), and if this ideal is equidimensional, it will have a Cohen-Macaulay quotient.
We also discuss further problems in facet ideal theory.

1 Facet ideals and relations to Stanley-Reisner theory

Definition 1.1 ([F1]). Let ∆ be a simplicial complex with vertex set {x1, . . . , xn}, and let k be
a field. We define the facet ideal of ∆ to be the square-free monomial ideal F(∆) = k[x1, . . . , xn],
where each generator is the product of the vertices of a facet (a facet is a maximal face of a simplicial
complex).

Example 1.2. If ∆ is the simplicial complex 〈xyz, yzu, uv〉 drawn below, then F(∆) = (xyz, yzu, uv)
is its facet ideal.
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For simplicity, we do not distinguish in the notation used for a facet F and the monomial that is
the product of the vertices of F . It is easy to see that there is a one-to-one correspondence between
square-free monomial ideals and simplicial complexes via this construction.

Definition 1.3. A subset A of the vertex set of ∆ is called a vertex covering of ∆ if every facet
of ∆ intersects A. If A is a minimal element of the set of vertex covers of ∆ it is called a minimal

vertex cover.

Note that A is a (minimal) vertex cover of ∆ ⇔ the ideal generated by A is a (minimal) prime
of F(∆).

Example 1.4. If ∆ is the simplicial complex in Example 1.2, then the vertex covers of ∆ (or the
generators of the primes of F(∆)) are listed below. The first five vertex covers (highlighted in bold)
are the minimal vertex covers of ∆.

{x,u}, {y,u}, {y,v}, {z,u}, {z,v}, {x, y, u}, {x, z, u}, {x, y, v}, . . . .

We now construct a new simplicial complex using the minimal vertex covers of a given simplicial
complex ∆.

Definition 1.5 ([F3]). Given a simplicial complex ∆, the simplicial complex ∆M called the cover

complex of ∆, is the simplicial complex whose facets are the minimal vertex covers of ∆. We say
that ∆ is unmixed if all of its minimal vertex covers have the same cardinality (i.e., if ∆M is pure).

Example 1.6. The simplicial complex ∆ = 〈xyz, yzu, uv〉 in Example 1.2 is unmixed, as ∆M =
〈xu, yu, yv, zu, zv〉 is pure.

Proposition 1.7 ([F3]). The simplicial complex ∆M is a dual of ∆; i.e. ∆MM = ∆.

We now focus on some basic definitions from Stanley-Reisner theory.



Sara Faridi: Simplicial trees, properties and applications 2

Definition 1.8 ([S]). If ∆ is a simplicial complex, the Stanley-Reisner ideal or non-face ideal N (∆)
of ∆ is a square-free monomial ideal such that F ∈ ∆ if and only if the product of the vertices of F
is not in N (∆).

Definition 1.9. The simplicial complex ∆∨ = {F ⊂ V (∆) | V (∆) \ F /∈ ∆} is the Alexander dual

of ∆.

Note that ∆∨∨ = ∆.

Proposition 1.10 ([F3]). If for two simplicial complexes ∆ and Γ we have N (Γ) = F(∆), then

N (Γ∨) = F(∆M ).

The following diagram clarifies Proposition 1.10.
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2 Simplicial Trees

Considering simplicial complexes as higher dimensional graphs, one can define the notion of a tree

which generalizes the same notion from graph theory.

Definition 2.1 ([F1]). A facet F of a simplicial complex is called a leaf if either F is the only
facet of ∆, or for some facet G ∈ ∆ \ 〈F 〉 we have F ∩ ∆ \ 〈F 〉 ⊆ G.

Example 2.2. Let ∆ = 〈xyz, yzu, zuv〉. Then F = xyz is a leaf, but H = yzu is not, as one can
see in the picture below.
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Definition 2.3 ([F1]). A connected simplicial complex ∆ is a tree if every nonempty subcollection

of ∆ (that is a subcomplex of ∆ whose facets are also facets of ∆) has a leaf.

Example 2.4. The simplicial complexes in examples 1.2 and 2.2 are both trees, but the one below
is not.

Properties of trees: If F(∆) ⊆ R = k[x1, . . . , xn] is the facet ideal of a simplicial tree ∆ , then

1. F(∆) satisfies Sliding Depth condition ([F1]).

This property puts bounds on the depths of the Koszul homology modules of F(∆). Sliding
Depth results in:
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2. F(∆) has a normal and Cohen-Macaulay Rees ring.

3. Trees are Strongly Cohen-Macaulay; i.e., if R/F(∆) is Cohen-Macaulay, then all Koszul ho-
mology modules of F(∆) are Cohen-Macaulay.

These results were proved in the case of graphs in [SVV] and were generalized to simplicial
complexes in [F1]. In fact, simplicial trees were defined this way so that they satisfied Sliding
Depth condition. Later, it turned out that they also satisfy the following ([F2]):

4. (König’s Theorem generalized to simplicial trees): if the minimum of the cardinalities of the
minimal vertex covers of ∆ is r, then ∆ has a collection of r pairwise disjoint facets.

The last fact tells us much about the combinatorial structure of trees, and allows us to extend
a result of Villarreal from graphs to simplicial complexes ([F2]):

5. R/F(∆) is Cohen-Macaulay ⇐⇒ ∆ is unmixed.

This last statement is stated in a much stronger language in [F2]: For a tree to be unmixed
it has to have a specific combinatorial structure, namely it has to be grafted (see [F2] for a
detailed description of grafting), and one can show that any grafted simplicial complex (not
necessarily a tree) is Cohen-Macaulay ([F2]).

But what about a simplicial tree that is not unmixed? We can show that in general ([F3]):

6. F(∆) is a sequentially Cohen-Macaulay ideal.

A square-free monomial ideal I is Sequentially Cohen-Macaulay if for every i, the pure i-
dimensional subcomplex of the non-face complex ∆N of I is Cohen-Macaulay ([S], [D]).

From the dualities discussed in Section 1 it easily follows that F(∆) being Sequentially Cohen-
Macaulay is equivalent to F(∆M ) being componentwise linear : this means that every homoge-
neous component of F(∆M ) (that is every ideal that is generated by all square-free monomials
in F(∆M ) of the same degree) has a linear resolution. Componentwise linear ideals were intro-
duced in [HH] and the equivalence mentioned above was proved there in terms of Alexander
Duality.

More is true: if ∆ is a tree, then every homogeneous component of F(∆M ) has linear quotients.
This property (due to [HT]), not only implies that the component has a linear resolution, but
also implies the following ([F3]):

7. If R/F(∆) is Cohen-Macaulay, and Γ is a simplicial complex such that N (Γ) = F(∆), then Γ
is shellable.

References

[D] Duval, A.M. Algebraic shifting and sequentially Cohen-Macaulay simplicial complexes, Electron. J.
Combin. 3 (1996), no. 1, Research Paper 21.

[F1] Faridi, S. The facet ideal of a simplicial complex, Manuscripta Mathematica 109 (2002), 159-174.

[F2] Faridi, S. Cohen-Macaulay properties of square-free monomial ideals, Preprint.

[F3] Faridi, S. Simplicial trees are sequentially Cohen-Macaulay, Preprint.

[HH] Herzog, J., Hibi, T. Componentwise linear ideals, Nagoya Math. J. 153 (1999), 141–153.

[HT] Herzog, J., Takayama, Y. Resolutions by mapping cones, The Roos Festschrift volume, 2. Homology
Homotopy Appl. 4 (2002), no. 2, part 2, 277–294 (electronic).

[S] Stanley, R.P. Combinatorics and commutative algebra, Second edition. Progress in Mathematics, 41.
Birkhuser Boston, Inc., Boston, MA, 1996. x+164 pp. ISBN: 0-8176-3836-9

[SVV] Simis A., Vasconcelos W., Villarreal R., On the ideal theory of graphs, J. Algebra 167 (1994), no. 2,
389–416.

[V] Villarreal R., Monomial algebras, Monographs and Textbooks in Pure and Applied Mathematics,
238. Marcel Dekker, Inc., New York, 2001.


