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Background

Definition

An extension A ⊆ B is weakly subintegral if

1 B is integral over A;
2 Spec(B) → Spec(A) is a bijection; and
3 residue field extensions are purely inseparable.

If rings are reduced and of finite type over k = k with char(k) =0
then (3) follows from (1)-(2). In this case, the residue field
extensions are isomorphisms.
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Definition

1 The weak normalization ∗
BA of A in B is the largest weakly

subintegral extension of A in B.
2 If B is the normalization of a reduced Noetherian ring A

then we write ∗A in lieu of ∗BA and call ∗A the weak
normalization of A.
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Definition

An element b ∈ B is said to be weakly subintegral over A
provided that there exist q ∈ N and ai ∈ A (1 ≤ i ≤ 2q + 1)
such that b satisfies the equations

Fn(T ) = T n +
n∑

i=1

(
n

i

)
aiT

n−i = 0 (q + 1 ≤ n ≤ 2q + 1) (1)

Reid, Roberts, and Singh proved that b ∈ B is weakly subintegral
over A if and only if A ⊆ A[b] is a weakly subintegral extension.

M. A. Vitulli Weak subintegral closure of ideals



NOTE: Let F (T ) = F2q+1(T )

F2q(T ) = (2q + 1)F ′(T );

Fn(T ) = (2q + 1) · · · (n + 1)F (2q+1−n)(T )
for (q + 1 ≤ n ≤ 2q + 1).

For a rational function h on an algebraic variety V let Vh denote
the sets of points where h is regular and let Γh ⊂ Vh × C denote
the graph of h : Vh → C.
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Proposition (Gaffney-Vitulli)

Let V ⊂ Cm be an irreducible algebraic variety. Let A = C[V ] and
let h ∈ A . Then, h ∈ ∗A ⇔ there exists an affine variety
Y ⊂ Cm+1 such that:

1 the projection onto the first m factors p : Y → Cm is a finite
morphism;

2 the restriction of p to p−1(V ) is a homeomorphism; and

3 Γh ⊂ p−1(V ).
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Definition

Consider I ⊂ A ⊂ B.
We say b ∈ B is weakly subintegral over I provided that
there exist q ∈ N and ai ∈ I i (1 ≤ i ≤ 2q + 1) such that
bn +

∑n
i=1

(n
i

)
aib

n−i = 0 (q + 1 ≤ n ≤ 2q + 1).

We let ∗B I = {b ∈ B | b is weakly subintegral over I} and
call ∗B I the weak subintegral closure of I in B.
The weak subintegral closure of I is the weak subintegral
closure of I in A and is denoted by ∗I .

Fact. ∗
B I is an ideal of ∗BA.
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Theorem

For I ⊆ A ⊆ B, let R denote the Rees ring A[It] and let S = B[t].
Then,

∗
SR = ⊕n≥0

∗
B(I n)tn.

In particular,
∗
B(I n) contains each element of B that is weakly

subintegral over
∗
B(I n), for all n ≥ 0.

Corollary

Let A be a reduced ring with finitely many minimal primes and I a
regular ideal of A. Let Q denote the total quotient ring of A and
R = A[It]. Then

∗R = ⊕n≥0
∗
Q(I n)tn.
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Local Characterizations

Joint work with T. Gaffney

Assume A is a Noetherian ring.

Notation

For an ideal I ⊆ A and a ∈ A

ordI (a) = sup{n | a ∈ I n}.

Next we let
v I (a) = lim

n→∞

ordI (a
n)

n
.

(the asymptotic Samuel function of I ) Let

I> = {a ∈ A | v I (a) > 1}.
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Example

I = (x2, y2) ⊂ k[x , y ]

v(xayb) = a + b (v is the only Rees valuation of I )

v(I ) = 2

v I (f ) =
v(f )

v(I )
=

v(f )

2
> 1 ⇔

v(f ) > 2 ⇔
v(f ) ≥ 3

Thus I> = m3 ⊂ I = m2.
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Fact. I> is a subideal of I .

Notation

For a non-nilpotent ideal I , let

RV(I ) = {(V1,m1), . . . , (Vr ,mr )} : Rees valuation rings of I , and

{v1, . . . , vr} : the corresponding Rees valuations.

For N-graded ring R let

R+ = ⊕n>0 Rn,

Proj(R) = {P ∈ Spec(R) | P homogeneous, R+ 6⊂ P}.
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The following is an algebraic version of a result by LeJeune-Teissier.

Proposition

Let I be a nonzero proper ideal in a reduced local ring
(A,m, k),R = A[It],S = R, and a ∈ A. Then,

a ∈ I ⇔ a ∈ IS(q) ∀q ∈ Proj(S) s.t. q ∩ A = m.

There is analog of this for weak subintegral closure.

Proposition

Let I be a nonzero proper ideal in a reduced local ring
(A,m, k),R = A[It],S = ∗R, and a ∈ A. Then,

a ∈ ∗I ⇔ a ∈ IS(q) ∀q ∈ Proj(S) s.t. q ∩ A = m.

M. A. Vitulli Weak subintegral closure of ideals



Connections with Reductions

Joint work with T. Gaffney

We still assume A is Noetherian

If I = I then I> is a subideal of I . Recall that

v I (a) = min
j

{
vj(a)

vj(I )

}
,

where vj(I ) = min{vj(b) | b ∈ I} and the vj are the Rees
valuations of I .
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The ideal I>

Lemma

Let I be an ideal of a Noetherian ring A. Then,

I> =
⋂
i

mi IVi ∩ A.

In particular, I> is an integrally closed ideal.

Proof. Let a ∈ A. Notice that
a ∈ I> ⇔ vj(a) > vj(I ) (j = 1, . . . , r). Since (Vj ,mj) is a dvr the
latter is true if and only if a ∈ mj IVj for all (Vj ,mj) ∈ RV(I ) .
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Conjecture of D. Lantz

The following was first conjectured by D. Lantz in the case of an
m-primary ideal in 2-dimensional regular local ring (A,m).

Proposition

Let I be an ideal of a Noetherian ring A. Then, I> ⊆ ∗I .

Proof. Suppose that a ∈ I>. Then we must have ordI (a
n) > n

for all n � 0. In particular, an ∈ I n for all n � 0. This
immediately implies that a ∈ ∗I .
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Notation

For an ideal I we write
MR(I )

for the set of minimal reductions of I .

Corollary

Let I be an ideal of a Noetherian ring A. Then,

I> ⊆
⋂

J∈MR(I )

∗J.

Proof. Observe that if J is any reduction of I then vJ = v I and
hence J> = I>. The assertion immediately follows from preceding
Proposition.
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Theorem

Let (A,m, k) be a local ring of dimension d such that k = k and
char(k) = 0. Suppose that I = I is an m-primary ideal. If J is any
minimal reduction of I , then

J + I> = ∗J.
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Lemma

Let I1 ⊆ I2 and J ⊆ m be ideals in a local ring (A,m). If I1 + JI2 is
a reduction of I2, then I1 is a reduction of I2.

Proposition

Let J ⊆ I be ideals in a Noetherian ring. If J + (I> ∩ I ) is a
reduction of I , then J is a reduction of I .
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Corollary

If I is m-primary ideal in the local ring (A,m, k) of dimension d,
then I/(I> ∩ I ) is a k-vector space and dimk(I/I> ∩ I ) ≥ d.
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Corollary

Let (A,m, k) be a local ring of dimension d such that k = k has
characteristic 0. Suppose that I = I is an m-primary ideal.

1 If dimk(I/I>) = d, then ∗J = I for every reduction J of I .

2 If dimk(I/I>) > d, then
⋂

J∈MR(I )
∗J = I>.

Proof of 1. Assume dimk(I/I>) = d and let J ∈MR(I ). Then,
J/(J ∩ I>) = I/I> we must have J + I> = I . Since J + I> ⊆ ∗J we
also have ∗J = I .
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Proof of 2. Assume dimk(I/I>) = D > d . Choose g1, . . . , gD in
I whose images form a k-basis for I/I>.
The set of minimal reductions of (g1, . . . , gD) can be identified
with a dense Zariski-open subset of the space of d-planes in I/I>,
which we identify with affine D-space. Intersecting over all
minimal reductions J of (g1, . . . , gD) we get
∩ ∗J/I> = ∩(J + I>)/I> is the zero subspace.
Hence the intersection of the ideals J + I> over all minimal
reductions of (g1, . . . , gD) is I>.
Since every minimal reduction of (g1, . . . , gD) is a minimal
reduction of I the result follows.
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