
NORMALIZ

Computing normalizations of affine semigroups

Winfried Bruns Robert Koch

with contributions by
Witold Jarnicki Matthias Siemering

June 28, 2006

Contents

1 Documentation of the program 2

1.1 Objectives . 2

1.2 Numerical aspects and limitations . 2

1.3 Distribution . 3

1.3.1 source/ . 3

1.3.2 doc/ . 3

1.3.3 example/ . 3

1.3.4 Singular/ . 3

1.4 Compilation . 3

1.5 Executables . 4

1.6 Running the program . 4

1.6.1 The input file . 5

1.6.2 The lattices . 5

1.6.3 The output file(s) . 6

1.6.4 The -f and -a options . 7

1.6.5 Examples . 8

1.7 Copyright . 12

1

2 Algorithmic and mathematical background 12

2.1 Introduction . 12

2.2 Constructing the triangulation . 13

2.3 The simplicial case . 14

2.4 Collecting generators . 15

2.5 Computing the Hilbert series . 15

2.5.1 The simplicial case . 16

2.5.2 The general case . 17

1 Documentation of the program

1.1 Objectives

Our program NORMALIZ computes

(1) the normalization (or integral closure) of an affine semigroup or, in other terms, the
Hilbert basis of a rational cone;

(2) the support hyperplanes of the cone;
(3) the lattice points and
(4) the support hyperplanes of an integral polytope;
(5) the generators of the integral closure of the Rees algebra of a monomial ideal I ⊆

K[X1, . . . ,Xn];
(6) the generators of the integral closure of I;
(7) the Hilbert series and Hilbert polynomial of the semigroup in the homogeneous case.

For the theory of affine semigroups and the notions of commutative algebra used in the
following we refer the reader to [BH].

There exists a SINGULAR library normaliz.lib that makes NORMALIZ accessible from
SINGULAR. Thus SINGULAR can be used as a comfortable environment for the work with
NORMALIZ, and, moreover, NORMALIZ can be applied directly to objects belonging to the
classes of toric rings and monomial ideals.

1.2 Numerical aspects and limitations

There are two versions of our program: normaliz works with 32 bit integers, and enormalz

uses integers of arbitrary precision. As far as we have observed, normaliz is able to do all
heuristic examples. But if you feel that some arithmetical problem could have arisen, we
recommend using enormalz. (It should, however, be clear that this version is significantly
slower.)

Nevertheless there is a common limitation for both versions: If you wish to compute the
Hilbert series and polynomial along with the generators of the semigroup, normaliz and
enormalz will only work in dimension ≤ 32.

1.3 Distribution

We distribute our program NORMALIZ through the file normaliz.zip which can be found
in the directory

ftp://ftp.mathematik.Uni-Osnabrueck.DE/pub/osm/kommalg/software/

on our FTP server. You can log in as anonymous.

Download the file normaliz.zip to a directory of your choice and unzip it by INFOZIP’s
unzip (or PKUNZIP or WINZIP (take care of the option “create subdirectories”)). The names
of the subdirectories created are self-explanatory. Nevertheless, some comments may be
useful.

Executables for Win32, Sparc (Solaris), Linux (Redhat) and Mac are provided separately.
The names of the zip files are self-explanatory.

1.3.1 source/

Here you find the 14 source files (and a Makefile):

alloc.c elemdiv.c enormalz.cc error.c heap.c hilbert.c hilbert.h

homog.c invest.c linequ.c normaliz.cc reduce.c shorten.c sigma.c

1.3.2 doc/

This contains the LATEX 2ε documentation file normaliz.tex, the compiled version normaliz.pdf
and a Makefile.

1.3.3 example/

Here are the input and output files of 8 examples, called rproj2, rafa1409, squaref0,
squaref1, rafa2310, rafa2416, polytop and rees. We thank Rafael Villarreal, who sent
us some of these examples.

1.3.4 Singular/

It contains the SINGULAR library normaliz.lib and the documentation files nmz_sing.tex
and nmz_sing.pdf.

1.4 Compilation

A Makefile is provided with the source code of NORMALIZ. The enormalz binary is built
simply by entering the command

make

3

whereas the normaliz binary is built by specifying the target through

make normaliz.

Note that it is crucial to have two libraries installed to link the enormalz binary properly.
We use the NTL library1 as a C++ interface for the GMP library2 which provides thee long
integer arithmetic for enormalz. (The corresponding variables in the Makefile may have to
be customized to your library directory.)

Via the makefile the source code compiles under Unix, Windows/Cygwin, Linux/Redhat
and Macintosh (provided that the used compiler is compatible with the widespread GCC).

However, for Windows user we recommend the DJGPP compiler. It produces much more
efficient code. Since we provide executables for Windows, we omit the details of using
DJGPP.

1.5 Executables

Executables for various platforms are provided separately in the ftp folder.

1.6 Running the program

The program normaliz is started by the following command line:

normaliz [-acfhv] <filename>

It expects its input in the file <filename>.in and writes its output into <filename>.out.
Therefore the argument <filename> in your command line must not contain the suffix .in.

With the option -f, not only the standard output file <filename>.out will be written, but
also several other files. (See Section 1.6.3 for details.)

With the option -a, all potentially useful output files will be written (See Section 1.6.3 for
details.) The -a option includes -f.

If you include the option -h in your command line, the h-vector and the (coefficients of the)
Hilbert polynomial will be written into <filename>.out. But note that this will only work
if the semigroup is homogeneous. (See Section 1.6.3 for a definition.)

The -v option overrides the -h option and restricts normaliz to those computations which
determine the multiplicity. The name has been chosen since this option is particularly inter-
esting for polytopal applications (see the “mode = 2” case below) if one is only interested in
effectively computing the volume of a lattice polytope.

Finally, let us explain the -c option. This will give you some access to ‘control’ data during
the computation. It is designed for users who run complex examples and wish to see how far

1http://www.shoup.net/ntl
2http://www.swox.com/gmp/

4

normaliz has come (and if it is still running at all). In the first part of the computation the
information is given as

Done with generator n

where n runs from rankS + 1 to the number of generators of S. (S is the semigroup whose
integral closure is to be computed; it depends on the mode; see below.)

In the second part of the computation the information is given in the format

[<block>.<subblock>] <current number> / <total number>

and refers to the triangulation discussed below. The triangulation is partitioned into blocks
and subblocks, and the first two counters refer to these, whereas current number and total
number describe the position within the current subblock. (See Section 2.2 and the final
remark at the end of the paper for more information.)

1.6.1 The input file

The input file <filename>.in is structured as follows.

The first line contains the number of generators of the semigroup S (or the number of lattice
points spanning the polytope, or the number of generators of the ideal I defining the Rees
algebra).

The second line contains the dimension of the ambient lattice.

The next lines contain the generators of S (or the spanning lattice points, or the exponent
vectors of the monomials generating the ideal I, respectively), as shown in the examples
below.

The last line contains a single digit, called mode, namely:

0, if the program should compute the integral closure of S in the ambient lattice (the
Hilbert basis of the cone spanned by the generators of S);

1, if the normalization of S is to be computed (i.e. the integral closure in the sublattice
generated by S);

2, if the integral points in a polytope and its Ehrhart semigroup are to be computed;
3, if the integral closure of the Rees algebra of I is to be computed.

1.6.2 The lattices

The output of NORMALIZ depends on the lattices involved. Therefore we define the ambient
lattice A, the semigroup S and the effective lattice E as follows:

mode 0: A = Zn where n is the number contained in the second line of the input file;
S is the subsemigroup of A generated by the vectors in the input file;
E is the smallest direct summand of A containing the subgroup gp(S) ⊂ A generated
by S.

mode 1: A and S as for mode 0, but E = gp(S).
mode 2 (polytopal application): A = Zn+1;

S is generated by the vectors (x,1) for the vectors x in the input file;
E now defined as for mode 0.

5

mode 3 (Rees application): A = Zn+1;
S is generated by the unit vectors e1, . . . ,en (representing the indeterminates of the
polynomial ring) and the vectors (x,1) for the vectors x in the input file;
E = Zn+1.

In each case the integral closure of S in E is computed. See also Subsection 2.1.

1.6.3 The output file(s)

In the case “mode ≤ 1” the output file <filename>.out contains the following data:

• the generators of the integral closure of S in E;
• if rankE = rankA, the extreme rays of the cone C generated by S and the (unique)

support hyperplanes of C;
• rankgp(S);
• the index of gp(S) in E in mode 0 (in mode 1 it is 1 by default);
• if S is homogeneous (see below), you will find its multiplicity in the output file, too;
• if, in addition, you have used the option -h, there are also the h-vector and the coeffi-

cients of the Hilbert polynomial.

Note that the support hyperplanes are not listed if rankE < rankA. However, in this case a
description of the cone generated by S in RE is available if the option -a is used (see below).

We call S homogeneous if there is an integer-valued linear form ϕ on E such that all the gen-
erators v of S given in the input file satisfy ϕ(v) = 1. For instance, the examples rafa2416,
squaref1 and rproj2 from the directory example are homogeneous.

Recall that the option -v suppresses the computation of the Hilbert basis and therefore re-
stricts the output to rank, index, support hyperplanes, and multiplicity. Thus it may happen
that, using -v, the output file becomes completely empty! In the modes ≥ 2, this option
behaves accordingly. It was introduced for users who wish to efficiently determine only the
(normalized) volume of a lattice polytope. This application will be discussed now.

The extreme rays are given by the elements in S that define the extreme rays. Therefore these
vectors need not have coprime entries.

Attention. normaliz uses 32 bit arithmetic for all its computation, including Hilbert func-
tions. It can very well happen, that the computation of the integral closure of S runs without
problems, but an overflow occurs in the Hilbert function computation. In this case you must
resort to enormalz.

A good test for the h-vector is whether its entries are nonnegative and sum up to the multi-
plicity. To get a correct denominator for the Hilbert polynomial with normaliz, one needs
rankS ≤ 13. If this condition is not fulfilled, normaliz does not compute the Hilbert poly-
nomial.

If “mode = 2”, the following data can be found in the output file:

• the generators of the semigroup determined by the polytope, called Ehrhart semigroup
in the following;

• the lattice points of the polytope;
• its normalized volume;

6

• its extreme points and its support hyperplanes if it is of full dimension;
• if you have put the option -h, there are also the h-vector and the coefficients of the

Ehrhart polynomial.

In “mode = 3”, the output file contains the following:

• the generators of the integral closure R̄ of the Rees algebra;
• the generators of the integral closure of the ideal;
• the extreme rays and the support hyperplanes;
• the multiplicity of the semigroup if it is homogeneous;
• if the ideal is primary to the irrelevant maximal ideal, the multiplicity of the ideal (not

to be confused with the multiplicity of the semigroup);
• if, in addition, the -h option has been used, the h-vector and the coefficients of the

Hilbert polynomial of R̄ are computed, too.

1.6.4 The -f and -a options

With the -f or -a option in the command line, NORMALIZ writes additional output files
whose names are of type <filename>.<type>. In the following we denote the files simply
by their types. Note that -a includes -f.

With the -f option the following files are written, provided the information that should go
into them is available:

gen The generators of the integral closure are written to the file out (provided they have
been computed). The format of this file and the other files (with the exception of
inv) is completely analogous to that of the input file, except that there is no last line
denoting the mode.

sup,val If rankA = rankE, then the support hyperplanes are written to sup. In this case,
the support hyperplanes of the cone C are evaluated (as linear forms) on the genera-
tors, too. The resulting matrix, with the generators corresponding to the rows and the
support hyperplanes corresponding to the columns, is written to the file val.

inv The file inv contains all the information from the file out that is not contained in any
of the other files. It helps to import these data into Singular.

With the -a option the following additional files are written, provided certain conditions are
satisfied and the information that should go into them is available:

ext The file ext contains the extreme rays (or points in polytopal mode), provided they
have been computed.

egn,esp,evl If rankE < rankA or the mode is 1, there are corresponding files egn, esp
and evl. These are defined as gen, sup and val, however with respect to the lattice E
and a basis of E.
Note that these data provide a description of the integral closure of S in the form E∩C.

tri The file tri contains the triangulation of the cone C computed by NORMALIZ.
The first line contains the number of simplicial cones in the triangulation, and the next
line contains the number m+1 where m = rankE. Each of the following lines specifies
a simplicial cone ∆: the first m numbers are the indices (with respect to the order in the
input file) of those generators of S that span ∆, and the last entry is the multiplicity of

7

∆ in E, i. e. the absolute value of the determinant of the matrix of the spanning vectors
(as elements of E).

1.6.5 Examples

The file rproj2.in contains the following:

16
7
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
1 1 1 0 0 0 1
1 1 0 1 0 0 1

1 0 1 0 1 0 1
1 0 0 1 0 1 1
1 0 0 0 1 1 1
0 1 1 0 0 1 1
0 1 0 1 1 0 1
0 1 0 0 1 1 1
0 0 1 1 1 0 1
0 0 1 1 0 1 1
0

This means that we wish to compute the integral closure of the semigroup generated by the
16 vectors

[1,0,0,0,0,0,0] , [0,1,0,0,0,0,0] , . . . , [0,0,1,1,0,1,1]

in dimension 7. We compute it in the ambient lattice Z7, which is indicated by the final digit
0.

Calling NORMALIZ by the command

normaliz rproj2

produces the file rproj2.out which has the following content:

17 generators of integral closure:
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
1 1 1 0 0 0 1
1 1 0 1 0 0 1
1 0 1 0 1 0 1
1 0 0 1 0 1 1
1 0 0 0 1 1 1
0 1 1 0 0 1 1
0 1 0 1 1 0 1

0 1 0 0 1 1 1
0 0 1 1 1 0 1
0 0 1 1 0 1 1
1 1 1 1 1 1 2

16 extreme rays:
1 1 1 0 0 0 1
1 1 0 1 0 0 1
1 0 1 0 1 0 1
1 0 0 1 0 1 1
1 0 0 0 1 1 1
0 1 1 0 0 1 1
0 1 0 1 1 0 1
0 1 0 0 1 1 1

8

0 0 1 1 1 0 1
0 0 1 1 0 1 1
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0

(original) semigroup has rank 7 (maximal)
(original) semigroup is of index 1

24 support hyperplanes:
1 1 1 1 1 0 -2
1 1 0 1 1 1 -2
1 1 1 0 1 1 -2
0 1 1 0 0 1 -1
0 0 0 0 0 1 0
1 0 0 1 0 1 -1
1 0 1 1 1 1 -2
1 1 1 0 0 0 -1

1 1 0 1 0 0 -1
1 0 1 0 1 0 -1
0 0 0 0 1 0 0
0 1 0 1 1 0 -1
1 0 0 0 0 0 0
1 1 1 1 1 1 -3
1 0 0 0 1 1 -1
0 1 0 0 1 1 -1
0 1 0 0 0 0 0
1 1 1 1 0 1 -2
0 0 1 1 1 0 -1
0 0 0 1 0 0 0
0 0 1 1 0 1 -1
0 0 1 0 0 0 0
0 1 1 1 1 1 -2
0 0 0 0 0 0 1

(original) semigroup is homogeneous via the linear form
1 1 1 1 1 1 -2

multiplicity = 72

From this, we see that there are 17 generators of the integral closure of the semigroup in
Z7 and 16 extreme rays, that the semigroup has index 1 in Z7, and that the corresponding
support hyperplanes are given by the linear forms [1,1,1,1,1,0,−2], [1,1,0,1,1,1,−2], . . . ,
[0,0,0,0,0,0,1]. Moreover, we are given the information that the semigroup is homogeneous
and that its multiplicity is 72.

If we use the same input file rproj2.in and call normaliz with the option -h, rproj2.out
will contain the additional lines

h-vector = 1 9 31 25 6 0 0

Hilbert poly : 1 97/30 71/15 49/12 13/6 41/60 1/10

which state that the h-vector of S̄ is

(h0,h1, . . . ,h6) = (1,9,31,25,6,0,0) ,

and that the Hilbert polynomial of S̄ is given by

PS̄(t) = 1+
97
30

t +
71
15

t2 +
49
12

t3 +
13
6

t4 +
41
60

t5 +
1
10

t6 .

Here is another example from the file polytop.in:

4
3
0 0 0
2 0 0
0 3 0
0 0 5
2

9

Here the lattice points of the integral polytope with the 4 vertices

[0,0,0] , [2,0,0] , [0,3,0] and [0,0,5]

in R3 are to be computed. (Note the last line, indicating the polytopal mode 2.)

The command normaliz polytop produces the file polytop.out:

19 generators of Ehrhart ring:
0 0 0 1
2 0 0 1
0 3 0 1
0 0 5 1
1 2 4 2
0 1 3 1
1 0 2 1
0 2 1 1
1 1 0 1
0 0 4 1
0 1 2 1
1 0 1 1
0 2 0 1
0 0 3 1
0 1 1 1
1 0 0 1
0 0 2 1
0 1 0 1
0 0 1 1

18 lattice points in polytope:
0 0 0
2 0 0
0 3 0
0 0 5
0 1 3
1 0 2

0 2 1
1 1 0
0 0 4
0 1 2
1 0 1
0 2 0
0 0 3
0 1 1
1 0 0
0 0 2
0 1 0
0 0 1

4 extreme points of polytope:
0 0 0
2 0 0
0 3 0
0 0 5

4 support hyperplanes:
0 0 1 >= 0
0 1 0 >= 0
1 0 0 >= 0

-15 -10 -6 >= -30

normalized volume = 30

The desired lattice points are the 18 ones listed above. To complete the picture, we also
provide all the generators of the Ehrhart ring of the polytope. (There are 19 of them in
this example.) Furthermore, the original polytope is the solution of the system of the 4
inequalities

x3 ≥ 0 , x2 ≥ 0 , x1 ≥ 0 and 15x1 +10x2 +6x3 ≤ 30 ,

and has normalized volume 30.

Again, calling NORMALIZ via the command normaliz -h polytop produces additional
output in polytop.out, namely

10

h-vector = 1 14 15 0

Ehrhart poly : 1 4 8 5

This provides the information that the h-vector of the Ehrhart ring is

(h0,h1,h2,h3) = (1,14,15,0) ,

and its Ehrhart polynomial is

P(t) = 1+4t +8t2 +5t3 .

To complete the picture, let us discuss the example in rees.in:

10
6
1 1 1 0 0 0
1 1 0 1 0 0
1 0 1 0 1 0
1 0 0 1 0 1
1 0 0 0 1 1
0 1 1 0 0 1
0 1 0 1 1 0
0 1 0 0 1 1
0 0 1 1 1 0
0 0 1 1 0 1
3

Comparing with the data in rproj2.in shows that rees is the origin of rproj2. (For details
see the comments on the reduction of item (3) on page 13.)

Here we want to compute the integral closure of the Rees algebra of the ideal generated by
the monomials corresponding to the above 10 exponent vectors. (Note again the last line,
containing 3 in this case.) The output in rees.out coincides with that in rproj2.out, up
to notions and the supplementary information on the integral closure of the ideal:

10 generators of integral closure of the ideal:
1 1 1 0 0 0
1 1 0 1 0 0
1 0 1 0 1 0
1 0 0 1 0 1
1 0 0 0 1 1
0 1 1 0 0 1
0 1 0 1 1 0
0 1 0 0 1 1
0 0 1 1 1 0
0 0 1 1 0 1

A brief look at rproj2.out shows that exactly the generators with the last coordinate 1
have been extracted. (So the ideal is integrally closed. This is not surprising because we
have chosen squarefree monomials.)

11

1.7 Copyright

You can use this program freely, provided that you refer to it in the following manner in any
publication for which it has been used:

W. Bruns, R. Koch et al.: NORMALIZ, computing normalizations
of affine semigroups. Available via anonymous ftp from

ftp://ftp.mathematik.uni-osnabrueck.de/pub/osm/kommalg/software/

2 Algorithmic and mathematical background

2.1 Introduction

As can be seen from Section 1.1, we are faced with the following situation.

Given a finite set
E ⊆ Zn ,

consider the affine semigroup

S = S(E) = N ·E = ∑
v∈E

N · v

generated by E, and its integral closure

S̄Zn = {x ∈ Zn | x integral over S}= {x ∈ Zn | k · x ∈ S for some k ≥ 1}

in Zn, or its normalization

S̄ZE = {x ∈ ZE | x integral over S}

(integral closure in ZE).

Now let
C = cone(E) = R≥0 ·E = ∑

v∈E
R≥0 · v .

The importance of the cone C becomes clear from the following

Remark 1: (i) S̄L = C∩L for L = Zn,ZE.
(ii) S̄L is a finitely generated semigroup.

General assumption: In the following, we always assume that C is a strictly convex cone,
i.e. C does not contain any nontrivial linear subspace, i.e. for all x ∈C we have:

−x ∈C =⇒ x = 0 .

Under this assumption, we call an element v ∈ S̄L irreducible if a decomposition

v = v1 + v2 with vi ∈ S̄L

implies v1 = 0 or v2 = 0.

As you may recall, NORMALIZ is able to compute (compare with the four “modes”)

12

(0) the integral closure of an affine semigroup in Zn;
(1) the normalization of an affine semigroup;
(2) the lattice points of an integral polytope and its Ehrhart ring;
(3) the integral closure of a monomial ideal I ⊆ K[X1, . . . ,Xn] and the integral closure of

its Rees algebra;
(H) the Hilbert series and Hilbert polynomial.

Obviously, (1) can be reduced to (0) by performing a suitable change of coordinates (in order
to pass to the effective lattice E). As for (2), let v1, . . . ,vm ∈Zn be the vertices of the polytope.
The lattice points in the polytope are exactly the vectors v∈Zn such that [v,1]∈ S̄Zn+1 , where
S is generated by [v1,1], . . . , [vm,1] ∈ Zn+1. This is how to reduce (2) to (0).

In order to solve (3), one starts as in (2). In fact this realizes the multiplication of the gener-
ators of I by an additional indeterminate. Furthermore, one adds the generators

[1,0, . . . ,0,0] , . . . , [0, . . . ,0,1,0] ∈ Zn+1

representing the indeterminates X1, . . . ,Xn, and again arrives at (0).

Therefore only the following two problems have to be solved.

(G) Find an irreducible system of generators of S̄L.
(H) Calculate the Hilbert series (and the Hilbert polynomial) of S̄L.

In order to solve problem (G), one proceeds according to the following steps:

(G1) Perform a change of coordinates (if necessary), such that L = Zn and dim(C) = n.
(G2) Decompose

C = Σ1∪·· ·∪Σt (1)

into simplicial cones Σ j ⊆ Rn (i.e. Σ j is spanned by exactly n linearly independent
vectors). This process is called triangulation.

(G3) Solve problem (G) for each Σ j.
(G4) Collect and reduce the generators found in step (G3).

Steps (G2)–(G4) will be discussed in the following three sections, and problem (H) is dealt
with in Section 2.5. (You can immediately proceed to Section 2.5 if you are especially
interested in problem (H).)

2.2 Constructing the triangulation

The triangulation is constructed inductively. The inductive step can be carried out as follows.
Assume that v1, . . . ,vs ∈ Zn span a cone C0 with decomposition

C0 = Σ1∪·· ·∪Σr ,

and v1, . . . ,vs,vs+1 ∈ Zn span a cone C1. In order to decompose C1, we proceed in four steps:

(a) Find all support hyperplanes h1, . . . ,hk of C0 for which vs+1 lies in the negative half-
space. (Actually, the computations of the support hyperplanes and the decomposition
of C0 are carried out simultaneously. For details of the former we refer the reader to
[Bu].)

13

(b) Find all pairs (hi,Σ j) such that hi is a support hyperplane of Σ j.
(c) For each pair (hi,Σ j) determined in (b), build a new simplicial cone from the vectors

vs+1 and hi ∩ Σ j ∩ {v1, . . . ,vs}. (Note that the last set will consist of exactly n− 1
vectors.)

(d) All the simplicial cones found in (c), together with Σ1, . . . ,Σr, will provide a decom-
position of C1.

For purposes of efficiency, especially when the Hilbert series is to be computed (and the
-h option is active), we subdivide the triangulation into blocks and subblocks. Every block
consists of exactly those simplicial cones found in step (c) above. That is, whenever a new
vector vs+1 has to be integrated, a new block starts and collects all simplicial cones which
are constructed due to vs+1 (and which in particular contain vs+1). vs+1 is then called the
characteristic vector of the block. A similar, but slightly more difficult operation leads to
subblocks within the blocks.

2.3 The simplicial case

Once having computed a complete triangulation as described above, one is faced with the
simplicial case. Therefore let v1, . . . ,vn ∈ Zn span a simplicial cone

Σ =
n

∑
i=1

R≥0 · vi ⊆ Rn .

How can one calculate generators of the semigroup

G := Σ∩Zn ?

Clearly, v1, . . . ,vn and the set

B := {α1v1 + · · ·+αnvn ∈ Zn |αi ∈Q , 0≤ αi < 1} (2)

generate the semigroup G. Therefore the main step is to explicitly determine set B.

To do this, define the lattice
Λ := Zv1 + · · ·+Zvn , (3)

and observe that there is a bijection

B 1:1←→ Zn/Λ : b 7→ b+Λ ,

so that we have to find those representatives of the residue classes that lie in B. This is
achieved as follows.

By elementary row and column operations, one finds matrices Tr,Tc ∈ GLn(Z) such that

Tr · (v1, . . . ,vn) ·Tc = diag(d1, . . . ,dn)

is a diagonal matrix with strictly positive entries di > 0. Now Λ is spanned by the columns
of (v1, . . . ,vn) ·Tc, i.e. by the columns of T−1

r ·diag(d1, . . . ,dn).

Let T−1
r = (w1, . . . ,wn). This implies

Λ = Zd1w1 + · · ·+Zdnwn ,

hence
B = {αiwi mod Λ | i = 1, . . . ,n , αi = 0, . . . ,di−1} .

14

2.4 Collecting generators

For a decomposition (1) of the original cone C, step (G3) yields a set U j of generators of
Σ j∩Zn for every Σ j. If we put

U =
t⋃

j=1

U j ,

then the elements of U obviously generate C ∩Zn. Now it remains to construct a subset
V ⊆U whose elements are irreducible and still generate C∩Zn.

Let U = {u1, . . . ,uN}. Set V is constructed inductively. In the 0-th step, we put V = /0. In
the k-th step, we check if uk− u ∈C for some u ∈ V . If so, we forget uk and increase k by
1. If not, we remove all those u from V which satisfy u− uk ∈ C, and add uk to V before
increasing k by 1.

To test whether a vector v ∈ Zn lies in C, one evaluates the support hyperplanes in v.

2.5 Computing the Hilbert series

Let us recall and extend the notation from Section 2.1, where we start with a finite set E =
{w1, . . . ,wm} ⊆ Zn. The integral closure of the affine semigroup S = S(E) ⊆ Zn is denoted
by S̄⊆ Zn. We may assume that the cone C = cone(E) satisfies dim(C) = n.

Next we define the corresponding semigroup rings

R := K[Xv | v ∈ S] and R̄ := K[Xv | v ∈ S̄] .

(Here, of course, K is a field, and X is the n-tuple (X1, . . . ,Xn) of indeterminates.) By Re-
mark 1 (ii), R̄ is a finite R-module.

Of special interest is the homogeneous situation, i.e. there is ϕ ∈ Hom(Zn,Z) such that
ϕ(wi) = 1 for all i. Then there is a natural grading of R̄, given by

degXv := ϕ(v) ,

and so R is generated in degree 1.

Throughout this section, we will assume that RRR is homogeneous. Then, according to the
grading, write

R̄ =
∞⊕

k=0

R̄k .

(Once more we refer the reader to [BH].) As is generally known, the Hilbert function of R̄ is
defined by

H(R̄,k) = dimK(R̄k) for k ≥ 0

and coincides with the Hilbert polynomial PR̄ for large values of k:

H(R̄,k) = PR̄(k) for k� 0 .

The Hilbert series of R̄ is

HR̄(t) =
∞

∑
k=0

H(R̄,k)tk .

15

and can be written as

HR̄(t) =
h0 +h1t + · · ·+hn−1tn−1

(1− t)n ,

where (h0,h1, . . . ,hn−1) is the hhh-vector of R̄. In particular,

H(R̄,k) = PR̄(k) for all k ≥ 0 .

Before discussing the general case, one should investigate the simplicial case.

2.5.1 The simplicial case

Let v1, . . . ,vn ∈ Zn span a simplicial cone Σ ⊆ Rn, and define the semigroup G := Σ∩Zn.
Then the corresponding semigroup rings become

R = K[Xv1, . . . ,Xvn] and R̄ = K[Xv | v ∈ G] .

An important fact is given by the following

Remark 2: R̄ is free over R with basis XB := {Xb |b ∈ B}, where B is defined as in (2).

Proof: Clearly, XB generates R̄ over R. Now assume that B = {b1, . . . ,bN} and

r1Xb1 + · · ·+ rNXbN = 0 with ri ∈ R .

As it suffices to look at monomial components, we may assume that

ri = monomial = kiX si1v1 · · ·X sinvn = kiX si1v1+···+sinvn

and
bi + si1v1 + · · ·+ sinvn = b j + s j1v1 + · · ·+ s jnvn

for all i, j. But this immediately implies bi−b j ∈ Λ (with Λ from (3)), hence bi = b j.

Remark 2 has an immediate consequence.

Corollary 3: We have

HR̄(t) =
h0 +h1t + · · ·+hn−1tn−1

(1− t)n

with the h-vector given by hi = #{b ∈ B | degXb = i}.

Proof: The remark yields
R̄ =

⊕
b∈B

RXb ,

hence
HR̄ = ∑

b∈B
HRXb .

Recalling that

HRXb(t) =
tdegXb

(1− t)n

finishes the proof.

16

2.5.2 The general case

In order to handle the general case, a combinatorial approach to the Hilbert function and
series is helpful.

For a subset /0 6= T ⊆C = cone(E), define the Hilbert function of T by

H(T,k) := #{v ∈ T ∩Zn |ϕ(v) = k} for k ≥ 0 ,

and (formally) the Hilbert series of T by

HT (t) =
∞

∑
k=0

H(T,k)tk .

For T = /0, we set H/0(t) = H(/0,0) = 1.

Next we claim that this definition makes sense, i.e. H(T,k) < ∞ for all k≥ 0 and T ⊆C. The
proof is quite simple: It suffices to consider H(C,k). Now if w ∈C satisfies ϕ(w) = k, then
there is a representation

w = ∑
v∈E

αv · v

with αv ≥ 0 and k = ϕ(w) = ∑v∈E αv. Hence every αv is bounded, and so is every coordinate
of w. Altogether we have shown that there is only a finite number of possibilities for the
choice of a vector w ∈C satisfying ϕ(w) = k and w ∈ Zn.

The following remark shows that the Hilbert series HT of a subset T ⊆ C generalizes the
Hilbert series HR̄ of R̄.

Remark 4: We have H(C,k) = H(R̄,k) for all k ≥ 0.

Proof: Simply write
R̄k =

⊕
v∈S̄

ϕ(v)=k

K ·Xv .

Therefore
H(R̄,k) = #{v ∈ S̄ |ϕ(v) = k}= H(C,k)

by Remark 1 (i).

In particular, the Hilbert series of any convex (in particular: simplicial) subcone C′ ⊆ C
coincides, of course, with that of the corresponding semigroup ring K[Xv | v ∈C′∩Zn].

Now there is an especially interesting connection between the Hilbert series of subsets of C.
We only need the simplicial version.

Lemma 5: Let Σ⊆C be the simplicial cone spanned by the vectors v1, . . . ,vn ∈ Zn. Then

HΣ = ∑
σ⊆{v1,...,vn}

Hint(cone(σ)) ,

where cone(σ) = R≥0 ·σ is the (possibly lower-dimensional) cone spanned by the vectors
from σ , and int(cone(σ)) is its interior (with respect to the standard topology of Rn).

17

Proof: If v ∈ Σ∩Zn has a representation

v = ∑
i∈I

αivi

with αi > 0 for all i ∈ I, then

v ∈ int(cone{vi | i ∈ I}) ,

and vice versa. The zero vector is also counted correctly due to the convention H/0 = 1.

Finally, we are now able to discuss the general case. For this, one uses the decomposition

C = Σ1∪·· ·∪Σt (1)

of C into simplicial subcones Σ j found in step (G2). One then proceeds by induction. The
case t = 1 is clear from Section 2.5.1 and Lemma 5. The inductive step can be derived from
Lemma 5 (and its proof) and is stated in the following

Recursion formula: Suppose that

C1 = C0∪Σ ,

where Σ⊆C is a simplicial cone spanned by the vectors v1, . . . ,vn ∈ Zn (satisfying ϕ(vi) = 1
for i = 1, . . . ,n), and C0,C1 ⊆C are finite unions of simplicial cones. Then, with the notation
introduced above,

HC1 = HC0 + ∑
σ⊆{v1,...,vn}

σ*simplicial subcone of C0

Hint(cone(σ)) . (4)

This is the formula we use in our implementation. However, we do not calculate Hint(cone(σ))
directly from the definition, but use the representation

Hint(cone(σ))(t) =
h′1t + · · ·+h′|σ |t

|σ |

(1− t)|σ |
,

where |σ | := #σ ≥ 1 and

h′i := #{b ∈ B∩ cone(σ) |ϕ(b) = |σ |− i}

for 1≤ i≤ |σ | (and B is as in (2)).

The validity of this approach can be seen from the proofs of Remark 2 and Corollary 3: One
shows that K[Xv | v ∈ int(cone(σ))∩Zn] is free over K[Xv | v ∈ σ] with basis XB′ . Here

B′ :=
{

∑
vi∈σ

αivi ∈ Zn |αi ∈Q , 0 < αi ≤ 1
}

is in a one-to-one correspondence with Bσ via the bijection

ψ : Bσ → B′ : v 7→ ∑
vi∈σ

vi− v .

18

Hence h′i must equal

#{b ∈ B′ |ϕ(b) = i}= #{b ∈ Bσ |ϕ(b) = |σ |− i} .

Some final remarks: (1) The subdivision of the triangulation into blocks and subblocks (see
Section 2.2) allows us to simplify the summation in (4): σ must contain the characteristic
vector of the current (sub-)block, and it must not be a face of any (already accounted) simplex
of this (sub-)block. This reduces the investigation to the current subblock and speeds up the
computation considerably, by a factor of at least 3. In order to check whether σ has to be
accounted, we also use bit operations now. This reduces the computation times by another
factor of 5, resulting in a considerably better performance of the program, compared to earlier
versions.

(2) We only have restricted the computation of the Hilbert series to the homogeneous case
because it is considerably easier to implement than the general case, in which the denomina-
tor of the Hilbert series has the form ∏

n
i=1(1− tai), and the ai vary along with the simplicial

subcones.

References

[BH] W. Bruns, J. Herzog: Cohen-Macaulay rings. Cambridge University Press, Cambridge
1993.

[Bu] E. Burger: Über homogene lineare Ungleichungssysteme. Z. angew. Math. Mech. 36
(1956), 135–139.

Universität Osnabrück
Fachbereich Mathematik/Informatik
D–49069 Osnabrück
Germany

<wbruns@uos.de>

19

