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We will explain some results on commuting n× n matrices and on com-

muting n × n nilpotent matrices over an algebraically closed field K. Tony

Iarrobino will explain some applications of this subjects. LetM(n, K) be the

set of all the n× n matrices over K. Let N (n, K) be the subset of M(n,K)

of the nilpotent matrices. For C ∈M(n, K) let ZC be the centralizer of C in

M(n,K). We first need to talk about some elementary results on commuting

matrices.

If C is a diagonal block matrix and any eigenvalue of C is eigenvalue of

only one block then any D ∈ ZC is also a diagonal block matrix with blocks

of the same orders as in C. This applies in particular to the case in which

any diagonal block of C has only one eigenvalue, which happens if the matrix

C is in Jordan canonical form.

Example Let

C =

(
C1

C2

)
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where

C1 =



λ1 1

λ1 1

λ1

λ1 1

λ1

 , C2 =

 λ2 1

λ2

λ2



and λ1 6= λ2 (the entries which are omitted are 0). If D ∈ ZC then

D =

(
D1

D2

)
where D1 ∈ ZC1 and D2 ∈ ZC2 .

Let I be the identity matrix in M(n, K). A matrix with only one eigen-

value λ is the sum of λ I and a nilpotent matrix, then its centralizer is the

centralizer of its nilpotent part. Hence in the study of many properties of

commuting matrices one can consider only nilpotent matrices.

Let us fix B ∈ N (n,K) and let u1 ≥ . . . ≥ ut be the orders of the Jor-

dan blocks of B. We will say that (u1, . . . , ut) is the partition (of n) of the

matrix B and we will denote this partition by P .

Let ∆B be a basis of Kn with respect to which B is in Jordan canonical

form. For any X ∈ M(n, K) let us consider the matrix which represents X

with respect to ∆B as a block matrix (Xhk), h, k = 1, . . . , t, where Xhk is an

uh × uk matrix.
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Example If

B =



0 1

0 1

0

0 1

0


and X ∈M(5, K) we write

X =

(
X11 X12

X21 X22

)
where X11 ∈ M(3, K), X22 ∈ M(2, K) and X12, X21 are respectively a

3× 2 and a 2× 3 matrix over K.

Lemma 1 (H.W. Turnbull and A.C. Aitken, 1931, [2]). If A ∈M(n, K) we

have AB = BA if and only if for 1 ≤ k ≤ h ≤ t the matrices Ahk and Akh

have the following form:

Ahk =


0 . . . 0 a1

hk a2
hk . . . auh

hk
... 0 a1

hk

. . .
...

...
. . . . . . a2

hk

0 . . . . . . . . . . . . 0 a1
hk

 ,

Akh =



a1
kh a2

kh . . . auh
kh

0 a1
kh

. . .
...

...
. . . . . . a2

kh
... 0 a1

kh
... 0
...

...

0 . . . . . . 0


where for uh = uk we omit the first uk − uh columns and the last uk − uh

rows respectively.
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A matrix R ∈ M(n, K) is said regular if the minimum polynomial of R has

degree n, that is if I, R, R2, . . . , Rn−1 are linearly independent. The subset

of M(n, K) of the regular matrices is open. The regular matrices of N (n,K)

are the matrices conjugated to the Jordan block Jn ∈ N (n,K). R is regular

iff different Jordan blocks of R have different eigenvalues. By Lemma 1 we

get that B is regular iff ZB has minimum dimension n; this property extends

to any n × n matrix. If R is regular then ZR is the vector space generated

by the powers of R (including also R0 = I).

Let

C(n,K) = {(C, D) ∈M(n, K)×M(n,K) : CD = DC}

which is said commuting variety. The open subset of C(n,K) of all (C, D)

such that D is regular is irreducible and is dense, since in the centralizer of

any matrix the subset of all the regular matrices is dense. This is the easiest

proof of the irreducibility of C(n, K); this result was first proved by Motzkin

and Taussky ([8]) and, independently, by Gerstenhaber ([5]). From this it

follows that C(n,K) has dimension n2 + n, that is has codimension n2 − n.

It is a conjecture, due to Artin and Hochster, that the n2 equations for

C(n, K) given by the condition CD = DC generate a radical ideal.

The irreducibility of C(n, K) also shows that the maximum dimension of an

algebra generated by two commuting n × n matrices is n, since it is the di-

mension of the algebra generated by two commuting matrices such that one

of them is regular. This result was pointed out by Gerstenhaber ([5]). It isn’t

known if the maximum dimension of the algebra generated by three n × n

matrices such that any two of them commute is still n. This is obviously

true if one of the matrices is regular or, more generally, if two of the matri-

ces commute with a regular matrix. Neubauer and Sethuraman ([10]) have

shown that this is still true if two of the matrices commute with a 2-regular

matrix, that is a matrix such that for any eigenvalue there are at most two
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Jordan blocks. This is a quite interesting open problem.

The irreducibility of C(n, K) has been extended by Richardson ([12]) to the

variety of the commuting pairs of elements of a reductive Lie algebra.

The variety N (n,K) is irreducible of dimension n2 − n. In fact, let D be

the subspace of M(n, K) of all X = (xij), i, j = 1, . . . , n, such that xij = 0

unless j − i = 1. Since any matrix has a Jordan canonical form, there exists

a surjective morphism

GL(n, K)×D → N (n, K);

moreover N (n,K) is the closure of the orbit of Jn, which has dimension

n2 − n.

We now recall some properties of the following variety:

H(n,K) = {(C, D) ∈ N (n,K)×N (n, K) : CD = DC}

One of the main reasons of interest in this subject is that the variety C(n,K)

is closely related to the Hilbert scheme of n points of an algebraic surface;

this relation will be explained by Tony Iarrobino. H(n,K) is related to the

local Hilbert scheme, that is to the case of lenght n schemes concentrated at

a single point.

The irreducibility of H(n, K) is much harder to prove than that of C(n, K).

It has been proved by Baranovsky ([1]) showing that it is equivalent to the

irreducibility of the local Hilbert scheme of n points on a surface and us-

ing the quite difficult proof by Briançon ([4]) of the irreducibility of this

scheme (which assumes char K = 0; a variant by Iarrobino ([7]) assumes

char K > n). Then I ([3]) proved the irreduciblity of H(n, K) only by calcu-

lations with matrices and with the small extension to the case char K ≥ n

2
.

Recently Premet ([11]) proved this result as a particular case of a theorem on

the irreducible components of the variety of the pair of commuting nilpotent
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elements of a reductive Lie algebra, without any hypothesis on char K. These

methods give both independent proofs of Briançon’s irreducibility theorem.

Let

NB = ZB ∩ N (n, K).

My proof of the irreducibility of H(n,K) uses some results on NB which can

be used to get other information and I am going to explain.

Let qi ∈ {1, . . . , t}, i = 1, . . . , t̄, be such that q1 = 1, uqi
= uqi+1−1 > uqi+1

for i = 1, . . . , t̄− 1, uqt̄
= ut.

Example If P = (5, 5, 5, 4, 4, 3, 2, 2) then q1 = 1, q2 = 4 (that is the index

of the first 4), q3 = 6, q4 = 7. There are four subpartitions such that the

numbers of each of them are equal.

Let A ∈ ZB and let us consider again the matrix (Ahk) for h, k = 1, . . . , t.

For i = 1, . . . , t̄ let

Āi = (a1
hk) where

{
qi ≤ h, k ≤ qi+1 − 1 if i = 1, . . . , t̄− 1

qt̄ ≤ h, k ≤ t if i = t̄

Lemma 2 A ∈ NB iff Āi is nilpotent for i = 1, . . . , t̄, hence NB is irre-

ducible.

Moreover for any A ∈ NB it is possible to choose ∆B such that, besides B

being in Jordan canonical form, Āi is upper triangular for i = 1, . . . , t̄.

Example If

B =


J3

J3

J3

J2


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the generic element A of NB is



a1
11 a2

11 a3
11 a1

12 a2
12 a3

12 a1
13 a2

13 a3
13 a1

14 a2
14

a1
11 a2

11 a1
12 a2

12 a1
13 a2

13 a1
14

a1
11 a1

12 a1
13

a1
21 a2

21 a3
21 a1

22 a2
22 a3

22 a1
23 a2

23 a3
23 a1

24 a2
24

a1
21 a2

21 a1
22 a2

22 a1
23 a2

23 a1
24

a1
21 a1

22 a1
23

a1
31 a2

31 a3
31 a1

32 a2
32 a3

32 a1
33 a2

33 a3
33 a1

34 a2
34

a1
31 a2

31 a1
32 a2

32 a1
33 a2

33 a1
34

a1
31 a1

32 a1
33

a1
41 a2

41 a1
42 a2

42 a1
43 a2

43 0 a2
44

a1
41 a1

42 a1
43 0



where

 a1
11 a1

12 a1
13

a1
21 a2

22 a1
23

a1
31 a1

32 a1
33

 is nilpotent.

For any A ∈ NB it is possible to choose ∆B such that A has the following

form:
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

0 a2
11 a3

11 a1
12 a2

12 a3
12 a1

13 a2
13 a3

13 a1
14 a2

14

0 a2
11 a1

12 a2
12 a1

13 a2
13 a1

14

0 a1
12 a1

13

0 a2
21 a3

21 0 a2
22 a3

22 a1
23 a2

23 a3
23 a1

24 a2
24

0 a2
21 0 a2

22 a1
23 a2

23 a1
24

0 0 a1
23

0 a2
31 a3

31 0 a2
32 a3

32 0 a2
33 a3

33 a1
34 a2

34

0 a2
31 0 a2

32 0 a2
33 a1

34

0 0 0

a1
41 a2

41 a1
42 a2

42 a1
43 a2

43 0 a2
44

a1
41 a1

42 a1
43 0



In the study of the geometrical properties of these varieties it is helpful

to describe the relation between the partitions of two nilpotent matrices

with the property that the orbit of one of them is contained in the clo-

sure of the orbit of the other. For this purpose, in the set of the orbits

of N (n,K) under the action of GL(n, K) the following partial order is de-

fined. Let OC and OD be respectively the orbits of C and D. We have that

OC = OD iff rank Cm = rank Dm for any m ∈ N. We say that OC < OD

if rank Cm ≤ rank Dm for any m ∈ N and there exists m ∈ N such that

rank Cm < rank Dm. The following claim is the basic theorem on degenera-

tions of orbits, due to Hesselink ([6]): OC < OD iff OC ⊂ OD.

We have that OC < OD and there are no orbits between them if and only if

the partition of C can be obtained from the partition of D in the following

way: subtracting 1 to a number and adding 1 to another number which is

smaller than the previous one of at least 2 (in particular, also to the number
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0 considered as last number of the partition). We can consider this order on

the orbits as an order on the partitions of n.

Examples

(5, 3, 2, 1) < (6, 3, 1, 1) < (6, 4, 1)

(6, 4, 3) < (6, 5, 2) < (6, 6, 1)

Let Y be any irreducible subvariety of N (n,K). For any m ∈ N, m < n,

the subset of Y of all A such that rank Am is the maximum possible is open.

Since Y is irreducible, the intersection of these open subsets is non-empty.

Hence there is a maximum partition for the elements of Y and there exists

an open subset of Y whose elements are the elements which have this par-

tition. Since these elements form a dense subset of Y , the knowledge of the

maximum partition can be useful in the study of many properties of Y . This

applies in particular to the subvariety NB.

With Tony Iarrobino we have studied the problem of finding the possible

partitions, or the maximum possible partition Q(P ), for the elements of NB.

We have solved this problem only in some special cases, by using the follow-

ing results.

For s ∈ N−{0} let q and r be the quotient and the remainder of the division

of n by s. Then (Jn)s has r Jordan blocks of order q + 1 and s − r Jordan

blocks of order q.
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Example If n = 7 and s = 3 we have q = 2 and r = 1 and we have

J7 : e7 → e6 → e5 → e4 → e3 → e2 → e1 → 0

(J7)
3 : e7 → e4 → e1 → 0

e6 → e3 → 0

e5 → e2 → 0

that is (J7)
3 has partition (3, 2, 2).

Examples (J8)
3 has partition (3, 3, 2), (J9)

3 has partition (3, 3, 3).

Hence if u1 − ut ≤ 1 B is a power of a regular nilpotent matrix. The next

proposition shows that this is the only case in which B commutes with a

regular nilpotent matrix.

Let ni ∈ {1, . . . , t}, i = 1, . . . , rB, be such that n1 = 1, uni
− uni+1−1 ≤ 1,

uni
− uni+1

> 1 for i = 1, . . . , rB − 1, unrB
− ut ≤ 1. We have that rB is

the minimum possible l such that there exist partitions P1, . . . , Pl of natural

numbers which together form P and such that the difference between any

two numbers of Pi is less or equal than 1 for i = 1, . . . , l.

Examples If P = (4, 4, 2, 1, 1) we have rB = 2, if P = (5, 4, 3, 1, 1) we

have rB = 3, if P = (9, 7, 5, 1) we have rB = 4.

Proposition 3 There exists a non-empty open subset of NB such that if A

belongs to it we have rank A = n− rB (that is A has rB Jordan blocks).

Example If P = (7, 6, 6, 5, 4, 2) we have rB = 3, hence any element of NB

has at least 3 Jordan blocks.

Let sB be the maximum of the cardinalities of the subsets
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{i1, . . . , il} of {1, . . . , t} such that i1 < · · · < il and ui1 − uil ≤ 1.

Example If P = (5, 4, 4, 2, 2) then (5, 4, 4) is a subpartition of P such

that the difference between its first number and its last number is less or

equal than 1, moreover it has the maximum possible number of elements

among all the subpartitions with this property; hence sB = 3.

Examples If P = (5, 4, 3, 1, 1) we have sB = 2, if P = (7, 5, 1) we have

sB = 1.

By Proposition 3 if sB > 1 we have Q(P ) > P ; the next proposition claims

that the partition of the sB-th power of any element of NB is less or equal

than P .

Proposition 4 For any A ∈ NB and m ∈ N we have

rank (AsB)m ≤ rank Bm.

Now we describe some partitions P such that the partition Q(P ) is easily

found.

Let ũi = uni
+ · · ·+uni+1−1 for i = 1, . . . , rB−1 and let ũrB

= unrB
+ · · ·+ut.

Let P̃ = (ũ1, . . . , ũrB
).

Examples If P = (5, 4, 4, 3, 2, 2) then P̃ = (5 + 4 + 4, 3 + 2 + 2) = (13, 7);

if P = (7, 5, 2, 2, 2, 1) then P̃ = (7, 2 + 2 + 2 + 1, 5) = (7, 7, 5).

Proposition 5 If sB = ni+1 − ni = t + 1 − nrB
for i = 1, . . . , rB − 1 we

have Q(P ) = P̃ .

Proof. There exists B̃ ∈ N (n,K) with partition P̃ such that B = (B̃)sB ,

hence B̃ ∈ NB. Then there exists a non-empty open subset of NB such that
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if A belongs to it we have rank(AsB)m = rank Bm for m ∈ N, that is AsB has

the same partition as B. Then A has partition P̃ .

As a particular case we get the following result.

Corollary 6 If sB = 1 we have Q(P ) = P .

Examples If P = (5, 4, 4, 3, 2, 2) we have Q(P ) = (13, 7); if P = (5, 5, 3, 3, 2, 1)

we have Q(P ) = (10, 8, 1); if P = (8, 5, 3, 1) then Q(P ) = P .

In general it is not true that Q(P ) = P̃ . In fact, it may happen that there ex-

ists m ∈ N such that rank (AsB)m < rank Bm for any A ∈ NB. For example,

if
P = (u, 1, . . . , 1︸ ︷︷ ︸ )

s

it can be shown by a calculation that the maximum index of nilpotency of

the elements of NB is max{u, s + 2}. Then Q(P ) = (max{u, s + 2}, n −
max{u, s + 2}) (since rB = 2), which is different from (u, s) if s > u− 2.

Examples If P = (3, 1, 1, 1) we have Q(P ) = (5, 1); if P = (7, 1, 1, 1, 1)

we have Q(P ) = P̃ = (7, 4).

Another interesting open problem is to find for which partitions P the va-

riety of all the pairs of commuting elements of ZB is irreducible. This is

obviously true if B is regular. Neubauer and Sethuraman ([10]) proved that

it is irreducible if rank B ≥ n− 2.
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