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Kaplansky’s problem

Fix I ⊆ k[x] monomial ideal x = x1, . . . , xn

[Kaplansky, early 1960s]. Find minimal free resolution of I

Def. Koszul simplicial complex K b
I =

{
σ ∈ {0,1}n | xb−σ ∈ I

}
at b ∈ Nn

[Hochster’s Formula]. Tori(k, I)b
∼= H̃ i−1(K

b
I; k)

Cor. βi,b(I) = dimk

Grading. F
•
: 0← F0 ← F1 ← · · · ← Fn−1 ← 0

minimal free resolution of I

N
n-graded⇒ Fi+1

∼=
⊕

b∈Nn

H̃ i(K
b
I; k)⊗k k[x](−b)

Note. Fi ← Fi+1 on F b

i+1 determined by action on H̃ iK
b
I

Note. (F a

i )b =

{
H̃ i−1K a

I if a � b

0 otherwise

Kaplansky’s problem⇔ find maps H̃ i−1K a
I← H̃ iK

b
I for a ≺ b whose

induced maps F a

i ← F b

i+1 constitute a free resolution of I.

1
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Kaplansky’s problem Sylvan matrices Sylvan morphism Chain-link fences Hedges Linkages Proof Future

Kaplansky’s problem

Wish List. • universal
• canonical

• closed form
• combinatorial

• minimal

Past progress
• [Taylor 1966] not minimal
• [Lyubeznik 1988] not minimal or canonical
• Wall resolutions [Eagon 1990] not proved combinatorial or universal
• stable ideals [Eliahou–Kervaire 1990] not universal
• hull resolutions [Bayer–Sturmfels 1998] not minimal
• [Bayer–Peeva–Sturmfels 1998, M–Sturmfels–Yanagawa 2000]

– generic monomial ideals: not universal

– degenerate Scarf resolutions: not minimal or canonical
• [Yuzvinsky 1999] not combinatorial (and claimed not canonical)
• shellable monomial ideals [Batzies–Welker 2002] not universal
• trivariate monomial ideals [M 2002] not canonical
• order complex of Betti poset [Tchernev–Varisco 2015] not minimal
• Buchberger resolutions [Olteanu–Welker 2016] not canonical or minimal

Subsequent development
• [Tchernev 2019] not closed-form (algorithmically combinatorial)
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Sylvan matrices

Obstacle. Express maps H̃ i−1K a
I ← H̃ iK

b
I

⇔ F a

i ← F b

i+1

for a ≺ b canonically

Suffices. H̃ i given as cycles B̃i ⊆ Z̃ i ⊆ C̃ i

↓ ↓ ↓

B̃i−1 ⊆ Z̃ i−1 ⊆ C̃ i−1

so specify homomorphisms

satisfying

Def. For each a ≺ b, the sylvan matrix for Fi ← Fi+1 has block Dab of the form

H̃ i−1K a ⊗ 〈xa〉

σ1

...

σm




(i − 1)-faces of K a

ց τ1 · · · τn ← i-faces of K b




←−−−−−−−−−−−−−−− H̃ iK
b ⊗ 〈xb〉
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Kaplansky’s problem Sylvan matrices Sylvan morphism Chain-link fences Hedges Linkages Proof Future

Sylvan matrices

Example 1. I = 〈xy , yz, xz〉 has Betti number β1,111(I) = 2 from K 111
I:

x
y

z

−∅⊗ z · xy H̃−1K 110 ⊗ 〈xy〉
⊕ ⊕

0 H̃−1K 101 ⊗ 〈xz〉
⊕ ⊕

∅⊗ x · yz H̃−1K 011 ⊗ 〈yz〉

∅

∅

∅




x y z

(x − z)⊗ xyz
[ 0 0 1 ]
[ 0 1 0 ]
[ 1 0 0 ]




←−−−−−−−−−−−−− H̃0K 111 ⊗ 〈xyz〉

4
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Kaplansky’s problem Sylvan matrices Sylvan morphism Chain-link fences Hedges Linkages Proof Future

Sylvan matrices

Example 2. I = 〈yz, xz, xy2, x2y〉

x
y

z

H̃
−1K 011⊗〈yz〉

⊕

H̃
−1K 101⊗〈xz〉

⊕

H̃
−1K 120⊗〈xy2〉

⊕

H̃
−1K 210⊗〈x2y〉

∅

∅

∅

∅




−1 1 0 −1 1 1 0−1 1/2−1/2
x y x y z x y z x y
[ 0 0 ][ 3/4 3/4 0 ][ 1/4 1/4 0 ][ 1 0 ]
[ 0 0 ][ 1/4 1/4 0 ][ 3/4 3/4 0 ][ 0 1 ]
[ 1 0 ][ 0 0 1 ][ 0 0 0 ][ 0 0 ]
[ 0 1 ][ 0 0 0 ][ 0 0 1 ][ 0 0 ]




←−−−−−−−−−−−−−−−−−−−−−−

H̃0K 220⊗〈x2y2〉
⊕

H̃0K 121⊗〈xy2z〉
⊕

H̃0K 211⊗〈x2yz〉
⊕

H̃0K 111⊗〈xyz〉

x
y

x
y
z

x
y
z

x
y




1 1 1
zy yx xz[
−1/2

1/2
0
0

−1/2
1/2

]




0
0
0

1/3
−2/3

1/3

−1/3
−1/3

2/3







1/3
1/3

−2/3

2/3
−1/3
−1/3

0
0
0




[
0
0

1/2
−1/2

0
0

]




←−−−−−−−−−−− H̃1K 221⊗〈x2y2z〉

5



Kaplansky’s problem Sylvan matrices Sylvan morphism Chain-link fences Hedges Linkages Proof Future

Sylvan matrices
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[ 0 0 ][ 1/4 1/4 0 ][ 3/4 3/4 0 ][ 0 1 ]
[ 1 0 ][ 0 0 1 ][ 0 0 0 ][ 0 0 ]
[ 0 1 ][ 0 0 0 ][ 0 0 1 ][ 0 0 ]




←−−−−−−−−−−−−−−−−−−−−−−

H̃0K 220⊗〈x2y2〉
⊕

H̃0K 121⊗〈xy2z〉
⊕

H̃0K 211⊗〈x2yz〉
⊕

H̃0K 111⊗〈xyz〉

x
y

x
y
z

x
y
z

x
y




1 1 1
zy yx xz[
−1/2

1/2
0
0

−1/2
1/2

]




0
0
0

1/3
−2/3

1/3

−1/3
−1/3

2/3







1/3
1/3

−2/3

2/3
−1/3
−1/3

0
0
0




[
0
0

1/2
−1/2

0
0

]




←−−−−−−−−−−− H̃1K 221⊗〈x2y2z〉
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Kaplansky’s problem Sylvan matrices Sylvan morphism Chain-link fences Hedges Linkages Proof Future

Canonical sylvan morphism

Theorem [Eagon–M–Ordog 2019]. If char k avoids finitely many

primes, then there is a canonical sylvan homology morphism

C̃ iK
b
I

Dab

←−− C̃ i−1K a
I,

satisfying • D(Z̃ iK
b
I) ⊆ Z̃ i−1K a

I

• D(B̃iK
b
I) = 0,and

explicitly given by the sylvan matrix of D = Dab with combinatorial entries

Dστ =
∑

λ∈Λ(a,b)

1

∆i,λI

∑

ϕ∈Φστ (λ)

wϕ

where • Λ(a,b) = {saturated decreasing lattice paths from b to a},

• Φστ (λ) = {chain-link fences from τ to σ along λ},

• wϕ = weight of ϕ,

• ∆i,λI ≈
∏

c∈λ

∑
det2(maximal invertible submatrices of ∂c

i ).and

That is, {Dab | a ≺ b} solves Kaplansky’s problem with the entire Wish List.
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Kaplansky’s problem Sylvan matrices Sylvan morphism Chain-link fences Hedges Linkages Proof Future

Chain-link fences

Def. Fix path λ ∈ Λ(a,b), so λ = (b0,b1, . . . ,bℓ) with λj = bj−1 − bj . A chain-

link fence ϕ from an i-simplex τ to an (i − 1)-simplex σ along λ is a sequence

τℓ−1 · · · τ1 τ0 — τ
/ \ / \ / \ /

σ — σℓ σℓ−1 σ2 σ1

a = bℓ bℓ−1 · · · b2 b1 b0 = b

of faces τj ∈ K bj

i I and σj ∈ K bj

i−1I, plus a choice of hedgerow, such that

τ0 — τ τ is boundary-linked to τ0;

\ σj for j = 1, . . . , ℓ− 1 is a stake chain-linked to τj ;

/ σj for j = 1, . . . , ℓ equals the facet τj−1 − λj of the simplex τj−1;

σ —σℓ σℓ is cycle-linked to σ

as specified by the hedgerow. The weight of ϕ is

wϕ =
∏

(edge weights)
∏

(vertex weights).
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Kaplansky’s problem Sylvan matrices Sylvan morphism Chain-link fences Hedges Linkages Proof Future

Hedges, stakes, and shrubberies

Def. Fix a field k and a CW complex K with i-faces Ki .

1. Ti ⊆ Ki is a shrubbery if ∂Ti = {∂τ | τ ∈ Ti} is a k-basis for B̃i−1.

e.g., i = 1: shrubbery⇔ spanning tree in every connected component

2. Si−1 ⊆ Ki−1 is a stake set if Si−1 maps to a k-basis for C̃ i−1/B̃i−1,

where Si−1 = Ki−1 r Si−1 (⇔ ∂∗Si−1 is a k-basis for B̃i )

3. A hedge of dim i is a • shrubbery Ti ⊆ Ki

• stake set Si−1 ⊆ Ki−1and a

together denoted STi .

Note.

1. shrubbery Ti ⇔ columns of boundary matrix ∂i span column space of ∂i ,

so Ti is a basis for the matroid of columns

2. stake set Si−1 ⇔ rows of coboundary matrix ∂ i span row space of ∂ i ,

so Si−1 is a basis for the matroid of rows

3. hedge⇔ maximal invertible submatrix of differential ∂i

8
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Kaplansky’s problem Sylvan matrices Sylvan morphism Chain-link fences Hedges Linkages Proof Future

Linkages and coefficients

Lemma. Each τ ∈ Ki forms a unique Ti -circuit τ − t ∈ Z̃ i with t ∈ k{Ti}.

Def. τ is cycle-linked to every τ ′ ∈ Ki appearing in τ − t . coeff. cτ (τ
′,Ti)

e.g. i = 1: usual circuit from spanning tree in a graph

Lemma. Each stake σ ∈ Si−1 has a unique shrub s ∈ k{Ti} with ∂s having

coefficient 1 on σ and 0 on S r σ.

Def. σ is chain-linked to every τ appearing in s. coeff. cσ(τ,STi)

e.g. i = 1 and K connected⇒ S0 = K0 r {root} ⇒ s(σ) = path from root to σ

Lemma. Each ρ ∈ Ki has a unique hedge rim t ∈ k{S i} with ρ− r ∈ B̃i .

Def. ρ is boundary-linked to every ρ′ appearing in r . coeff. cρ(ρ
′,Si)

Exercise. ρ− r = ∂s(ρ) for any choice of Ti+1 coeff = edge weight

Def. A hedgerow along λ ∈ Λ(a,b) is (roughly) a sequence of hedges in K bj I

vertex weight ≈ det2(maximal invertible submatrix indexed by hedge)

9
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Kaplansky’s problem Sylvan matrices Sylvan morphism Chain-link fences Hedges Linkages Proof Future

Proof ingredients

Main idea. Natural spectral sequence with H̃ i−1K a
I at p = |a| and q = i − p

in E1
pq yields natural maps on subquotients:

H̃ i K
b

I

⊕

|a|=|b|−1

H̃ i−1K a
I

⊕

|a|=|b|−2

H̃ i−1K a
I

⊕

|a|=|b|−3

H̃ i−1K a
I

⊕

|a|=|b|−4

H̃ i−1K a
I

. . .

To fix: split!

Ingredients.
1. [Eagon 1990]: make a complex from vertically split spectral sequence

2. Which splitting? Moore–Penrose pseudoinverse!

Combinatorial formula from [Berg 1986].
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Future directions

Note. Sylvan resolution works noncanonically but still combinatorially—and

in all characteristics!—using combinatorial choices of splittings.

Next stpes.

1. Recover known resolutions (planar maps for trivariate; Eliahou–Kervaire,

etc. . . . ) from (noncanonical) sylvan resolutions.

2. Minimal free resolutions of toric and lattice ideals
• Koszul double complex methods on “Spanish simplicial complex”
• (sylvan minimal free resolutions of lattice modules)/(lattice action)

3. Use splitting methods to construct canonical minimal resolutions of

arbitrary graded ideals with k = C: average splittings by integration.

4. Apply Koszul double complexes to bound global dimension of Rn-graded

modules over real-exponent polynomial rings. (Importance: these are

real multiparameter persistent homology modules; finite global dimension

needed for Topological Data Analysis.)

11



Kaplansky’s problem Sylvan matrices Sylvan morphism Chain-link fences Hedges Linkages Proof Future

Future directions

Note. Sylvan resolution works noncanonically but still combinatorially—and

in all characteristics!—using combinatorial choices of splittings.

Next stpes.

1. Recover known resolutions (planar maps for trivariate; Eliahou–Kervaire,

etc. . . . ) from (noncanonical) sylvan resolutions.

2. Minimal free resolutions of toric and lattice ideals
• Koszul double complex methods on “Spanish simplicial complex”
• (sylvan minimal free resolutions of lattice modules)/(lattice action)

3. Use splitting methods to construct canonical minimal resolutions of

arbitrary graded ideals with k = C: average splittings by integration.

4. Apply Koszul double complexes to bound global dimension of Rn-graded

modules over real-exponent polynomial rings. (Importance: these are

real multiparameter persistent homology modules; finite global dimension

needed for Topological Data Analysis.)

11



Kaplansky’s problem Sylvan matrices Sylvan morphism Chain-link fences Hedges Linkages Proof Future

Future directions

Note. Sylvan resolution works noncanonically but still combinatorially—and

in all characteristics!—using combinatorial choices of splittings.

Next stpes.

1. Recover known resolutions (planar maps for trivariate; Eliahou–Kervaire,

etc. . . . ) from (noncanonical) sylvan resolutions.

2. Minimal free resolutions of toric and lattice ideals
• Koszul double complex methods on “Spanish simplicial complex”
• (sylvan minimal free resolutions of lattice modules)/(lattice action)

3. Use splitting methods to construct canonical minimal resolutions of

arbitrary graded ideals with k = C: average splittings by integration.

4. Apply Koszul double complexes to bound global dimension of Rn-graded

modules over real-exponent polynomial rings. (Importance: these are

real multiparameter persistent homology modules; finite global dimension

needed for Topological Data Analysis.)

11



Kaplansky’s problem Sylvan matrices Sylvan morphism Chain-link fences Hedges Linkages Proof Future

Future directions

Note. Sylvan resolution works noncanonically but still combinatorially—and

in all characteristics!—using combinatorial choices of splittings.

Next stpes.

1. Recover known resolutions (planar maps for trivariate; Eliahou–Kervaire,

etc. . . . ) from (noncanonical) sylvan resolutions.

2. Minimal free resolutions of toric and lattice ideals
• Koszul double complex methods on “Spanish simplicial complex”
• (sylvan minimal free resolutions of lattice modules)/(lattice action)

3. Use splitting methods to construct canonical minimal resolutions of

arbitrary graded ideals with k = C: average splittings by integration.

4. Apply Koszul double complexes to bound global dimension of Rn-graded

modules over real-exponent polynomial rings. (Importance: these are

real multiparameter persistent homology modules; finite global dimension

needed for Topological Data Analysis.)

11



Kaplansky’s problem Sylvan matrices Sylvan morphism Chain-link fences Hedges Linkages Proof Future

Future directions

Note. Sylvan resolution works noncanonically but still combinatorially—and

in all characteristics!—using combinatorial choices of splittings.

Next stpes.

1. Recover known resolutions (planar maps for trivariate; Eliahou–Kervaire,

etc. . . . ) from (noncanonical) sylvan resolutions.

2. Minimal free resolutions of toric and lattice ideals
• Koszul double complex methods on “Spanish simplicial complex”
• (sylvan minimal free resolutions of lattice modules)/(lattice action)

3. Use splitting methods to construct canonical minimal resolutions of

arbitrary graded ideals with k = C: average splittings by integration.

4. Apply Koszul double complexes to bound global dimension of Rn-graded

modules over real-exponent polynomial rings. (Importance: these are

real multiparameter persistent homology modules; finite global dimension

needed for Topological Data Analysis.)

11



Kaplansky’s problem Sylvan matrices Sylvan morphism Chain-link fences Hedges Linkages Proof Future

Future directions

Note. Sylvan resolution works noncanonically but still combinatorially—and

in all characteristics!—using combinatorial choices of splittings.

Next stpes.

1. Recover known resolutions (planar maps for trivariate; Eliahou–Kervaire,

etc. . . . ) from (noncanonical) sylvan resolutions.

2. Minimal free resolutions of toric and lattice ideals
• Koszul double complex methods on “Spanish simplicial complex”
• (sylvan minimal free resolutions of lattice modules)/(lattice action)

3. Use splitting methods to construct canonical minimal resolutions of

arbitrary graded ideals with k = C: average splittings by integration.

4. Apply Koszul double complexes to bound global dimension of Rn-graded

modules over real-exponent polynomial rings. (Importance: these are

real multiparameter persistent homology modules; finite global dimension

needed for Topological Data Analysis.)

11



Kaplansky’s problem Sylvan matrices Sylvan morphism Chain-link fences Hedges Linkages Proof Future

Future directions

Note. Sylvan resolution works noncanonically but still combinatorially—and

in all characteristics!—using combinatorial choices of splittings.

Next stpes.

1. Recover known resolutions (planar maps for trivariate; Eliahou–Kervaire,

etc. . . . ) from (noncanonical) sylvan resolutions.

2. Minimal free resolutions of toric and lattice ideals
• Koszul double complex methods on “Spanish simplicial complex”
• (sylvan minimal free resolutions of lattice modules)/(lattice action)

3. Use splitting methods to construct canonical minimal resolutions of

arbitrary graded ideals with k = C: average splittings by integration.

4. Apply Koszul double complexes to bound global dimension of Rn-graded

modules over real-exponent polynomial rings. (Importance: these are

real multiparameter persistent homology modules; finite global dimension

needed for Topological Data Analysis.)

11



Kaplansky’s problem Sylvan matrices Sylvan morphism Chain-link fences Hedges Linkages Proof Future

Future directions

Note. Sylvan resolution works noncanonically but still combinatorially—and

in all characteristics!—using combinatorial choices of splittings.

Next stpes.

1. Recover known resolutions (planar maps for trivariate; Eliahou–Kervaire,

etc. . . . ) from (noncanonical) sylvan resolutions.

2. Minimal free resolutions of toric and lattice ideals
• Koszul double complex methods on “Spanish simplicial complex”
• (sylvan minimal free resolutions of lattice modules)/(lattice action)

3. Use splitting methods to construct canonical minimal resolutions of

arbitrary graded ideals with k = C: average splittings by integration.

4. Apply Koszul double complexes to bound global dimension of Rn-graded

modules over real-exponent polynomial rings. (Importance: these are

real multiparameter persistent homology modules; finite global dimension

needed for Topological Data Analysis.)

11



Kaplansky’s problem Sylvan matrices Sylvan morphism Chain-link fences Hedges Linkages Proof Future

Future directions

Note. Sylvan resolution works noncanonically but still combinatorially—and

in all characteristics!—using combinatorial choices of splittings.

Next stpes.

1. Recover known resolutions (planar maps for trivariate; Eliahou–Kervaire,

etc. . . . ) from (noncanonical) sylvan resolutions.

2. Minimal free resolutions of toric and lattice ideals
• Koszul double complex methods on “Spanish simplicial complex”
• (sylvan minimal free resolutions of lattice modules)/(lattice action)

3. Use splitting methods to construct canonical minimal resolutions of

arbitrary graded ideals with k = C: average splittings by integration.

4. Apply Koszul double complexes to bound global dimension of Rn-graded

modules over real-exponent polynomial rings. (Importance: these are

real multiparameter persistent homology modules; finite global dimension

needed for Topological Data Analysis.)

Thank You
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