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Definition

Let A be a graded Artinian k-algebra and linear form ¢ € A;.
The Jordan type of A for £ is a partition of dim(A)
determining the Jordan block decomposition of the
multiplication map m; : A — A and it is denoted by Pa .
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Example

: _ klxy]
Consider A = )

» For{ =x+y,

» For ¢ = x,

» For =y,

HF(A) = (1,2,3,3,2,1).

Pasty = HF(A)' = (6.4.2),

1
Pax = (4,4,4), 3
Y XY XTYXTy

PA,y = (37 37 37 3) = PX,X'
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From now on we assume R = k[x,y| and A= R/l is a graded
Artinian quotient of R.

Diagonal lengths of Pay is a vector obtained by the number of
boxes in the Ferrers diagram of P4, on each diagonal.

e Diagonal lengths of P4y is given by the Hilbert function of A.
[larrobino-Yaméogo]
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Question

Fix
T=(12..d-1,d%d-1,..,21)

Find all partitions with diagonal lengths T which occur as Jordan
types of complete intersection algebras for some linear form.
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Let £ = k[X, Y] be the Macaulay dual ring to R = k[x, y] where
R acts on & by differentiation.

e A= R/l is a complete intersection algebra with socle degree j
if and only if there is F € &; such that | = Ann(F). [Macaulay]

e Let Bi = (ai1,...,a,) be a k-linear basis of A;. The matrix
Hess'(F) := [ag)ag) o F}
is called the i-th Hessian matrix of F with respect to B;.

h'(F) := det (Hess'(F))

is called i-th Hessian determinant of F with respect to B;.
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For ¢ = ax + by denote by hj(F) := héa b)(F) the Hessian
evaluated at p; = (a, b).

[Maeno-Watanabe]

o my -2 : A — Aj_; has maximal rank <= hj(F) # 0.

e A has the SLP with ¢ € A; <—

hi(F) # 0, w:o,...,%J.
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For every A with HF(A) = T and general enough ¢ € Ay
Pao=T".

e TV occurs a the Jordan type of complete intersection algebra
A = R/ Ann(F) with HF(A) = T and general ¢ € Ay, and

hi(F)#0, ¥i=0,...,d — 1.

Question:

What Jordan type partitions with diagonal length T are possible
for complete intersection algebras having at lease one Hessian
vanishing?
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The total number of partitions with diagonal lengths T is
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—1\ .
> (d 1)2' =2(3971), if k> 1.
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i=1

d
2.3 +1=3""1 if k=1
i=1
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e P = Py for an Artinian complete intersection A = R/ Ann(F)
and linear form £ € A1, and there is an ordered partition
n=ny+---+ nc of an integer n satisfying 0 < n < d
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each i € [1, c], and zero otherwise;
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Theorem [A., larrobino, Khatami] Let P be a partition with
diagonal lengths T. Then the following are equivalent

e P = Py for an Artinian complete intersection A = R/ Ann(F)
and linear form £ € A1, and there is an ordered partition
n=ny+---+ nc of an integer n satisfying 0 < n < d
(0 < n<d—1for k=1) such that h)*™" "~ (F) £ 0, for
each i € [1, c], and zero otherwise;

e P satisfies

P = (pfl,...,pgc,(d—n)din*l), (1)
where pi=k —1+2d —nj—2(n+---+nj_1), for 1 <i<ec.

= There are 29 complete intersection Jordan types, if k > 2.
There are 2971 complete intersection Jordan types, if k = 1.
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P = (11%,5%).




Thank you!



