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Vertex Decompositions of Simplicial Complexes
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Figure 1. A vertex decomposi-on ∆ = star∆(a) ∪ del∆(a) of ∆.

Geometric Vertex Decomposition

vertex decomposi4ons of simplicial complexes
∆ = star∆(v) ∪ del∆(v)

Stanley–Reisner
correspondence

vertex decomposi4ons of squarefree monomial ideals
I∆ = Istar∆(v) ∩ Idel∆(v)

Knutson, Miller, Yong [7]

geometric vertex decomposi4ons of polynomial ideals
iny(I) = Cy,I ∩ (Ny,I + 〈y〉)

Klein and Rajchgot [5]

geometric vertex decomposi4on allowing subs0tu0on
iny(I) = Cy,I ∩ (Ny,I + 〈yd〉)

If I∆ = 〈vdiqi〉, where di ∈ {0, 1} and v does not divide any qi, then,

Istar∆(v) = 〈qi〉, Ilink∆(v) = Istar∆(v) + 〈v〉, Idel∆(v) = 〈qi | di = 0〉 + 〈v〉

Let y be a variable in K[x1, . . . , xn] and let < be a y-compa0ble term order.
Write G = {ydiqi +ri}i a Gröbner basis for I with respect to <, where y and
ydi do not divide any terms of any qi and ri, respec4vely. Then,

iny(I) = 〈ydiqi〉, Cy,I := 〈qi〉, Ny,I := 〈qi | di = 0〉.

Liaison Theory

Equidimensional schemes V1 and V2 with no common components are
G-linked by X := V1 ∪ V2 if X is Gorenstein.
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Figure 2. The intersec4on on the right is a G-link of C1 and C2 in P3 [8].

This resul4ng equivalence classes are called Gorenstein liaison classes.

Open Ques-on ([6], 2001). Is every Cohen-Macaulay subscheme of Pn in
the Gorenstein liaison class of a complete intersec0on (glicci)?

Geometric Vertex Decomposition & Liaison

Key observa-on of Nagel and Römer, Klein and Rajchgot:

󰀝
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󰀞[4, 9]

This generalizes for geometric vertex decomposi4ons allowing subs0tu0on:
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󰀃
Ny,I + 〈yd〉
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An unmixed ideal I is geometrically vertex decomposable (allowing subs-tu-
-on) [1, 5, 4] if it is unital or

◮ generated by indeterminates, or,
◮ admits a geometric vertex decomposi4on (allowing subs4tu4on)

iny(I) = Cy,I ∩
󰀃
Ny,I + 〈yd〉

󰀄

such that both Cy,I and Ny,I are geometrically vertex decomposable
(allowing subs4tu4on).

Unital ideals and ideals generated by indeterminates are complete intersec-
4ons. Hence, for homogeneous ideals:

geometrically vertex decomposable
(allowing subs0tu0on) =⇒ glicci =⇒ Cohen-Macaulay

Geometric vertex decomposi4on allowing subs4tu4on also yields that for
non-homogeneous ideals:

geometrically vertex decomposable =⇒ Cohen-Macaulay

Toric Ideals of Graphs

The toric ideal of a graph G is IG := ker
󰀃
{vi, vj} ∈ E 󰀁−→ vivj

󰀄
. Generators

of IG correspond to closed even walks of G.
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Figure 3. Toric ideals: IC4 = 〈ac − bd〉 and IH = 〈sv2xy − tuw2z〉.

Open Problem. Classify graphs whose toric ideals are Cohen-Macaulay.

◮ [2] Toric ideals of bipar4te graphs are geometrically vertex
decomposable, hence are Cohen-Macaulay

◮ [3] Gives a forbidden subgraph/odd-cycle condi4on that prevents
Cohen-Macaulayness

GVD Allowing Substitution for Toric Ideals of Graphs

There are infinite families of graphs that are...

◮ GVD allowing subs4tu4on but not GVD
◮ weakly GVD allowing subs4tu4on but not weakly GVD
and hence are Cohen-Macaulay.

Idea: These families are closed under certain edge-gluing opera4ons.

Figure 4. Graphs that are GVD allowing subs4tu4on but not GVD.
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