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Rigidity theory of bar and joint structures

A framework is a pair (G, p) where G is a graph and p: V(G) — R" is
an embedding of G in R". A framework (G, p) is flexible if there exists a
nontrivial continuous motion of the vertices that preserves the edge lengths
of (G, p), and rigid otherwise.
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It turns out that to study rigidity of frameworks with generic embeddings,
one only has to study the rank of a specific matrix M. Elements in the
kernel of M are called stresses.



A simplicial complex A is a collection of subsets of [n] such that

TCoeN = 7€

Definition

Given a simplicial complex A on [n] vertices, its Stanley-Reisner ideal is
the ideal
/A = (X,'1 e Xt {il,...,fs} QIA)

| \

Definition
Given a homogeneous ideal | C R = K[xi, ..., x| such that dim § =d, a

linear system of parameters (Isop) is a sequence of linear forms
01,...,604 such that

dim R
I+ (61,--,64)

< 0




Lee's amazing idea (an example)

Given a simplicial complex A of dimension d and an embedding p of A in

RI*1 we may view p as d + 1 linear forms. In our case, these will be a
Isop of Ia.

(1,2) (2,2)

01 = x1 + 2% + 2x3 + xa
0 = 2x1 + 2% + x3 + xa

(1,1) (2,1)



Lee's amazing idea (an example)

In 1996, Lee noticed that stresses could be computed by solving systems of
differential equations:

(1,2) (2,2)

01 = x1 + 2% + 2x3 + xa
0 = 2x1 + 2% + X3 + xa

(1,1) (2,1)

fo +2f, +2f, +1f, =0
2le""2&2"’_&3"’_&4:0
f;<1X3:0

fioxa =0  x1x3 and xoxa are the generators of /a



Lee's amazing idea (an example)

In 1996, Lee noticed that stresses could be computed by solving systems of
differential equations:

(1,2) (2,2)

01 = x1 + 2% + 2x3 + x4
0 = 2x1 + 2% + X3 + xa

(1,1) (2,1)

faq +2f, +2f; + £, =0
2fy +2fy +f + 1 =0
f;<1X3:O

fioxa =0  x1x3 and xoxa are the generators of /a

Computing stresses = computing coefficients of f (degf = 2)
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Algebra Combinatorics
Data from geometric | Linear system of
complex parameters

Vertex coordinates

Dimension of solution
space for

the system of PDEs
Solutions to system of
differential equations

Dimension of space of | Hilbert series of A(A)
stresses (h-vector of A)

Stresses Elements of A(A)




- R
Let A(A) = 15@n,. 000

Algebra Combinatorics
Data from geometric | Linear system of
complex parameters

Vertex coordinates

Dimension of solution
space for

the system of PDEs
Solutions to system of
differential equations

Dimension of space of | Hilbert series of A(A)
stresses (h-vector of A)

Stresses Elements of A(A)

A key problem when trying to work on the topics above is that
computations can be sensitive to 601,...,04.1



The nonlinear case: symmetric polynomials

On the algebra side, most of the theory does not rely on 61, ...,60,,1 being
linear.
ex = Z X ...Xj k-th elementary symmetric polynomial
<<k

Proposition (DEP, GS, S, HM, AR)

If A is a simplicial complex of dimension d, the set of polynomials
€1,...,€4+1 IS a system of parameters of /a.

From now on, let IK*°(A) denote the following finite dimensional vector
space
Klxi, ..., xn]

]KCO A —
(&) In+(e1,...,ed41)

HS(KK*(A), q) = ha(q)[qld!



A starting point: a very familiar example

Let S°(A) be the space of solutions to the system

> fyx =0 Vk

1<ip<--<ix<n
fX;l.‘.X,'s = 0 V{i]_,--.,is} gA

we call it the space of coinvariant stresses of A



A starting point: a very familiar example

Let S°(A) be the space of solutions to the system

> fyx =0 Vk

1<ip < <ix<n
fX;l.A.X,'S = O v{i].)“'7i5} ¢A
we call it the space of coinvariant stresses of A

If A is the boundary of a simplex, coinvariant stresses correspond to

solutions of
> g, =0 Vk

1<i<---<ix<n

It is known that there is a unique polynomial of degree (g) satisfying the
condition above:

H (xi —xj) The Vandermonde determinant
1<i<j<n




From the boundary of a simplex to arbitrary complexes

Theorem (Top coinvariant stresses and top homology, (-, 2025))

Let A be a d-dimensional ﬁimplicia/ complex and
ciFi+ -+ cFs(#0) € Hy(A; K). Then

C1XF; V(Fl) + -+ CsXF, V(FS) € SCO(A),

where xg, = HieFj x; and

Corollary (-, 2025)

If A is a d-dimensional IK-homology sphere, then the unique polynomial of
degree (d;rz) in S°(A) is the one above.




Some (unexpected?) consequences of coinvariant stresses

Let A be a d-dimensional simplicial complex and

_ K([xi,...,Xn]
In+ (x{T2, .. x3T2)

An

Theorem (WLP and coinvariant stresses (-, 2025))

If Hy(A; K) # 0 and fy_qy > fy, then An fails the weak Lefschetz property
(WLP)
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Theorem (Failure should be expected (-, 2025))

Given a generalized Erd6s—Rényi model for complexes of dimension d > 0,
there exists an open interval (cq,d + 1) # 0 such that

lim P(Aa fails the WLP) =1
n—o00

when the probability parameter p is in (cq,d + 1)

4




Some questions

When A is the boundary of a simplex the ring IK*°(A) has several nice
properties from combinatorial, algebraic and geometric perspectives.

Question (Coinvariant algebraic g-theorem)

Let A be a Q-homology sphere. Does the ring IK°(A) satisfy the strong
Lefschetz property?







