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Outline

Motivations for the work – physical and mathematical
Anomalies
Noninvertible symmetries
Topological Theories

Review properties of 2-categories
braided, sylleptic, symmetric
strongly fusion

Main theorems about condensing in 2-categories
Explicit examples using the theorems
Cohomology computations for braided strongly fusion 2
categories
2-Deligne theorem (the symmetric case)
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Motivations

Theories of quantum gravity should have no global
(categorical) symmetries.
There should be no anomalies for the symmetries, or
categorical/noninvertible symmetries.
In the context of gravity, this mean that the topological part of
the theory (described by some higher category) should be
condensible to the vacuum.
Generalize the notion of an anomaly for a symmetry, to an
anomaly for a noninvertible symmetry.
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Motivations cont.: Review of Anomalies

Given a QFT, the first thing to do is identify its global
symmetries.

Flavor
Spacetime
Duality

Once you have a list of symmetries, you can ask “which
symmetries can I gauge?”
Why do you want to gauge? One of the first reasons for doing
so is so that certain fields have the right number of degrees of
freedom.

But not being able to gauge is OK. But the obstruction to
gauging is a useful thing to remember.
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Motivations cont.: Gauging in (0+1)d

Consider QM with a state space H and a hamiltonian Ĥ. The
system is modeled by (H, Ĥ).

The Hilbert space H is not physical, but its projectivization is.
We should work with the projective unitary group PU on this
space.
You can ask about automorphisms of (H, Ĥ), which we will
take to be a group G .
If G really is represented linearly on H, then gauging the
G -symmetry would be modelled by the Hilbert space of cofixed
points.
But, we have G → PU. Then in order to define the gauged
theory, you need to lift G along U → PU.
The fiber of this map is a U(1), and so the obstruction to
doing this lifting is a class ω ∈ H2(BG ;U(1)).
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Motivations cont.: Noninvertible symmetries

Suppose some operators in your theory have fusion that goes
a× b =

∑
c N

c
abc .

The operators (defects) satisfy some crossing relations, i.e.
F-symbols.
The fusion rules are noninvertible, hence the set of defects
which enact the fusion ring symmetry are noninvertible.

Example

Consider Z/2 Tambara Yamagami. It has a Z/2 line η and a
noninvertible topological line N .

η × η = 1, η ×N = N × η = N , N ×N = 1 + η.

This type of fusion category structure occurs in the Ising CFT. The
line N implements a duality symmetry in Ising.
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Motivations: Topologically Ordered Phases

Extended operators, with long range entanglement. The phase
is locally trivial, i.e. there are no nontrivial local operators in
the IR.
Extended operators are supported on a line or surface, or
higher dimensional surface. Can build higher dimensional
surfaces from lower dimensional ones.
This is the idea of a condensation, or gauging. In particular we
can build a phase by starting with the vacuum and flooding
with a network of interfaces.
The extended operators need to be able to detect each other
through a means of linking (physical requirement).
We say two phases are equivalent if we can build a gapped
interface between them via a condensation (Morita equivalent).

7 / 30



Motivations: Topologically Ordered Phases

Extended operators, with long range entanglement. The phase
is locally trivial, i.e. there are no nontrivial local operators in
the IR.

Extended operators are supported on a line or surface, or
higher dimensional surface. Can build higher dimensional
surfaces from lower dimensional ones.
This is the idea of a condensation, or gauging. In particular we
can build a phase by starting with the vacuum and flooding
with a network of interfaces.
The extended operators need to be able to detect each other
through a means of linking (physical requirement).
We say two phases are equivalent if we can build a gapped
interface between them via a condensation (Morita equivalent).

7 / 30



Motivations: Topologically Ordered Phases

Extended operators, with long range entanglement. The phase
is locally trivial, i.e. there are no nontrivial local operators in
the IR.
Extended operators are supported on a line or surface, or
higher dimensional surface. Can build higher dimensional
surfaces from lower dimensional ones.

This is the idea of a condensation, or gauging. In particular we
can build a phase by starting with the vacuum and flooding
with a network of interfaces.
The extended operators need to be able to detect each other
through a means of linking (physical requirement).
We say two phases are equivalent if we can build a gapped
interface between them via a condensation (Morita equivalent).

7 / 30



Motivations: Topologically Ordered Phases

Extended operators, with long range entanglement. The phase
is locally trivial, i.e. there are no nontrivial local operators in
the IR.
Extended operators are supported on a line or surface, or
higher dimensional surface. Can build higher dimensional
surfaces from lower dimensional ones.
This is the idea of a condensation, or gauging. In particular we
can build a phase by starting with the vacuum and flooding
with a network of interfaces.

The extended operators need to be able to detect each other
through a means of linking (physical requirement).
We say two phases are equivalent if we can build a gapped
interface between them via a condensation (Morita equivalent).

7 / 30



Motivations: Topologically Ordered Phases

Extended operators, with long range entanglement. The phase
is locally trivial, i.e. there are no nontrivial local operators in
the IR.
Extended operators are supported on a line or surface, or
higher dimensional surface. Can build higher dimensional
surfaces from lower dimensional ones.
This is the idea of a condensation, or gauging. In particular we
can build a phase by starting with the vacuum and flooding
with a network of interfaces.
The extended operators need to be able to detect each other
through a means of linking (physical requirement).

We say two phases are equivalent if we can build a gapped
interface between them via a condensation (Morita equivalent).

7 / 30



Motivations: Topologically Ordered Phases

Extended operators, with long range entanglement. The phase
is locally trivial, i.e. there are no nontrivial local operators in
the IR.
Extended operators are supported on a line or surface, or
higher dimensional surface. Can build higher dimensional
surfaces from lower dimensional ones.
This is the idea of a condensation, or gauging. In particular we
can build a phase by starting with the vacuum and flooding
with a network of interfaces.
The extended operators need to be able to detect each other
through a means of linking (physical requirement).
We say two phases are equivalent if we can build a gapped
interface between them via a condensation (Morita equivalent).

7 / 30



Motivations cont.: Topological Phases in Physics

Many physical theories, as well as supersymmetric theories,
flow to topological phases.

To determine which one, it is useful to compute anomalies and
match them.
Obtaining the actual value might involving computing
something like an η-invariant, or writing down an anomaly
indicator.
It is also important to consider the topological content of the
theory, i.e. the objects and morphisms of the corresponding
category.
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Motivations cont.

The anomaly for noninvertible symmetries is something like
the obstruction to a fibre functor

F : kRep(G) → kVec .

I will focus only on 2-categories for this talk, and consider fibre
functors here.

If the category is fully symmetric and fermionic we can
upgrade to

Fib : C → 2SVec .

For a physical theory: every (primary) operator in the category
of operators must be detectable by a topological operator. So
we do not want the fully category to be k Rep(G).
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Motivations cont.

Questions
Consider fusion 2-category C with some level of monoidality:

1 What are the structures of the 2-category obtained by
condensing a suitable algebra object?

2 In which cases can we condense to the vacuum? What are the
obstructions?

Caveat: Certainly if the category can be condensed to the vacuum
then there is no anomaly to talk about.

In the case where we cannot condense to the vacuum, we do not
know how to define the anomaly.
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2-Category Background

We start with some axioms for our 2-category

Definition
A fusion 2-category is a finite semisimple rigid monoidal 2-category
with simple monoidal unit.

Rigid, finite semisimple. This is a property to make it
topological and useful for physics applications.

Examples
The 2-category 2Vec of finite semisimple 1-categories
The 2-category 2Vec[G ] of finite dimensional G -graded
2-vector spaces.
The 2-category 2Rep[G ] of 2-representations of G.
For B a braided fusion 1-category, Mod(B) is a 2-category of
finite semisimple B-module 1-categories.
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Physical Picture

The physical picture for condensing surfaces in a 2-category involves
finding some gapped boundary of the initial 2-category C, and then
possibly triggering another condensation in order to map to 2SVec.

Condensation along a specific direction of spacetime builds modules
which usually causes the resulting 2-category to lose a level of
monoidality.
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2-Category Background cont.

Now include more levels of monoidality, start with a braiding:
A braided monoidal 2-category comes equipped with a braiding
b which gives an equivalence

bA,B : A□B → B□A

There are two invertible modifications R and S

and they satisfy certain relations.
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2-Category Background cont.

We can equip a braided monoidal 2-categories with an additional
structure called a syllepsis.

σ is an invertible modification that satisfies certain relations.

We can define a symmetric 2-category as one where the syllepsis
satisfies

σB,A ◦ bA,B = bA,B ◦ σA,B .
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Statement of Theorems

Assigning extra properties to our category we can prove the
following theorems:

Theorem
For B a braided multifusion 2-category, and B a braided separable
algebra in B, ModB(B) is a multifusion 2-category.

Example
Let B be a braided multifusion 1-category, that is a braided
separable algebra in 2Vec. Then, Mod2Vec(B) = Mod(B) is the
multifusion 2-category of finite semisimple right B-module
1-categories.
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Statement of Theorems cont.

Theorem
Let S be a monoidal 2-category, and B a symmetric separable
algebra in S. Then, ModS(B) is a braided monoidal 2-category.

Definition

The symmetric center of S, denoted by Z(3)(S) is the full
sub-2-category of S on those objects C such that

σD,C ◦ bC ,D = bC ,D ◦ σC ,D , ∀D ∈ S.

Theorem
Let S be a sylleptic monoidal 2-category, and B a symmetric
separable algebra in Z(3)(S). Then, ModS(B) is a sylleptic
monoidal 2-category.
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Strongly Fusion 2-categories

Suppose we condensed to a phase with no lines i.e.
ΩB = SVec.
It still has surface operators, which form a fusion 2-category.
We call these categories strongly (super) fusion.

Theorem:
Every indecomposable object of a strongly (super) fusion
2-category is invertible. The equivalence classes of indecomposable
objects form a finite group.

The surfaces have fusion rules described by a finite group E .
We can use strongly fusion in conjunction with other facts
about the category that take into account the ambient
dimensions.
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Statement of Theorems cont.

If we can make the resulting category after condensing
strongly fusion, we can use cohomology to see if we can
condense to 2SVec .
The nicest case is when we find a subcategory 2Rep(G ) inside
our original category.
The idea is then to condense something in this subcategory
and see how it affects the ambient category.

Theorem

Let B be a braided fusion 2-category with 2Rep(G ) ≃ B0 as
braided fusion 2-categories.
Condensing φ = Vec[G ] in B yields a strongly fusion
2-category ModB(φ).
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Statement of Theorems cont.

There are implication of the last theorem for sylleptic categories:

Let S be a sylleptic multifusion 2-category. Any inclusion
2Rep(G ) ⊆ S of sylleptic fusion 2-categories automatically
includes in the symmetric center of S.
Namely, 2Rep(G ) is necessarily contained in the component of
the identity of S.

Corollary

Suppose that there is an inclusion of 2Rep(G ) in S, then
ModS(φ) is a sylleptic strongly fusion 2-category. The canonical
monoidal 2-functor S → ModS(φ) is sylleptic.
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Examples

Connected Fermionic
Consider an ambient category 2Rep (G , z). Take modules wrt
SVec
As left 2Rep (G , z)-module 2-categories, we have
2SVec ≃ Mod2Rep (G ,z)(SVec)
SVec is viewed as an algebra in 2Rep (G , z) via
Rep (G , z) → SVec.

Strongly fusion example
Let B be a braided fusion 2-category, and let
F : 2Rep(G ) ↪→ B be a braided monoidal inclusion.

Condense the algebra φ = Vec[G ] in B.
Strongly fusion ModB(φ) equipped with a monoidal 2-functor
B → ModB(φ)
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Examples: Disconnected

Suppose the fusion 2-category of surface operators and their
interactions is given by 2Vec[G ].
We can again consider the algebra Vec[G ] in 2Vec[G ], the
sum of the equivalence classes of simple objects.
Vec[G ] is the fusion 1-category of G -graded vector spaces
viewed as an algebra in 2Vec[G ] with the canonical grading.

Lemma
The left 2Vec[G ]-module 2-category 2Vec is equivalent to
Mod2Vec[G ](Vec[G ]).
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Examples: Disconnected cont.

Theorem
Let B be a braided fusion 2-category with 2Vec[E ] ⊆ B a
braided monoidal inclusion

The 2-category ModB(Vec[E ]) obtained by condensing
Vec[E ] is a fusion 2-category
π0(ModB(Vec[E ])) ∼= π0(B)/E . Moreover, the canonical
2-functor B → ModB(Vec[E ]) is monoidal.

Disconnected Category

Consider 2Vec[Z4], with simple objects labeled by
{Vec0,Vec1,Vec2,Vec3} and fusion given by addition mod 4.
Mod2Vec[Z4](Vec[Z2]) has two connected components. On the
other hand, one sees that π0(2Vec[Z4])/Z2 has the same two
connected components.
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Cohomology

In general, a theory with (only) grouplike p-spacetime
dimensional objects with q-ambient dimensions should be
classified by degree (p + q + 1) cohomology of E [q].

Fermionic braided strongly fusion category B can be classified
by SH5(E [2])

SH0(pt) = C× , SH1(pt) = Z2 , SH2(pt) = Z2 .

The (3+1)d theory associated to B is condensible to the
vacuum if SW5(E [2]) is trivial.
SW•(pt) is a spectrum that gives the fermionic gapped
theories up to morita equivalence.

Hi (E [2]; SW j(pt)) ⇒ SW i+j(E [2])
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Cohomology cont.

In the bosonic case we compute W5(pt) by a Galois descent
procedure.
The way to think about the bosonic case, is to treat it
fermionically and equipped with an action of the categorified
Galois group Gal(SVec /Vec)= ZF

2 [1].

Galois descent says that the algebra of a bosonic higher
category can be considered as the algebra of a
ZF

2 [1]-equivariant higher supercategory.
We wish to understand the twisted SW•-cohomology with E2
page given by:

Hi (BZF
2 [1];SW j(pt)) ⇒ SW i+j(BZF

2 [1]) = W i+j(pt).
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2-Deligne

Since we have been talking about braided and sylleptic F2Cs, let’s
discuss symmetric ones.

The 1-Deligne theorem:
By working fermionically, there exists a fibre functor
F : Rep(G ) → SVec.
Implication: In a 4d/5d topological theories with line
operators, we can condense them away as they are symmetric
monoidal.

Theorem
1 Every symmetric fermionic fusion 2-category admits a fibre

2-functor to 2SVec.
2 Every symmetric fermionic strongly fusion 2-category admits a

fibre 2-functor to 2SVec.
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2-Deligne cont.

Strategy for part 2: Start with symmetric strongly fusion
2-category S, with E its abelian group of connected components.

We begin by describing S× the Picard sub-2-category of S
We will recover S through some properties of S×, which is
easier to work with.

The Picard 2-category S× fits into the following fibre
sequence of spectra

2SVec× → S× → HE → Σ2SVec×,

In particular, S× is completely determined by the map of
spectra HE → Σ2SVec×. Up to homotopy, such maps are
classified by the group SH7(E [4]).
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2-Deligne cont.

Via a spectral sequence computation, we show SH7(E [4]) = 0.
This implies that S× ∼= 2SVec××E as symmetric monoidal
2-categories.
In particular BSVec×E is a full symmetric monoidal
sub-2-category of S. It contains an object in every connect
component of S.

Cauchy completing BSVec×E recovers S = 2SVec[E ].

But as we discussed before, 2SVec[E ] is condensable to
2SVec.
In the bosonic case, such strongly fusion 2 categories are
classified by H7(E [4];C×).
This is nonvanishing if E has 2-torsion.
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More on generalizing anomalies

There are certain categories which admit multiple fibre
functors.
Anomalies in d-dimensions should be realized as interfaces
between fibre functors in d + 1 dimensions.
This is an analogue of the fact that anomalies for grouplike
symmetries reside at the boundary of SPTs.
It is possible to work out a noninvertible cocycle like condition
for what takes the place of an anomaly.
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Conclusion

We wanted to simplify a 2-category as far as possible.
The nicest case is when we find a subcategory that looks like
2Rep(G ) in the connected case.
We found modules at a purely algebraic level.
When we can make the category strongly fusion, we can
compute the obstruction to condensing to the vacuum.
This helped ups establish a generalization of the 1-Deligne
theorem.
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Fin.
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