Graphical CSS Code Transformation Using ZX Calculus

Jiaxin Huang ${ }^{1}$ Sarah Meng Li ${ }^{2,3}$ Lia Yeh ${ }^{4,5}$
Aleks Kissinger ${ }^{4}$ Michele Mosca ${ }^{2,3,6}$ Michael Vasmer ${ }^{2,6}$
${ }^{1}$ Hong Kong University of Science and Technology
${ }^{2}$ Institute for Quantum Computing, University of Waterloo
${ }^{3}$ Dept. of Combinatorics \& Optimization, University of Waterloo
${ }^{4}$ Department of Computer Science, University of Oxford
${ }^{5}$ Quantinuum, 17 Beaumont Street, Oxford OX1 2NA, UK
${ }^{6}$ Perimeter Institute for Theoretical Physics

Towards a fully operational and scalable quantum computer

- Understand environmental decoherence processes and model them properly.
- Error correction to protect quantum information against decoherence.

Quantum Error Correcting Codes (QECCs)

[^0]
Basic States \& Gates

$$
\left.\begin{array}{l}
|0\rangle=\left[\begin{array}{l}
1 \\
0
\end{array}\right],|1\rangle=\left[\begin{array}{l}
0 \\
1
\end{array}\right], \quad|+\rangle=\frac{(|0\rangle+|1\rangle)}{\sqrt{2}}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1
\end{array}\right],|-\rangle=\frac{(|0\rangle-|1\rangle)}{\sqrt{2}}=\frac{1}{\sqrt{2}}\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \\
|00\rangle=|0\rangle \otimes|0\rangle=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right],|01\rangle=|0\rangle \otimes|1\rangle=\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right],|10\rangle=|1\rangle \otimes|0\rangle=\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right],|11\rangle=|1\rangle \otimes|1\rangle=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right] \\
X=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], \quad Z=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right], \quad Y=\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right]=i X Z, \quad H=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right], \quad C X=\left[\begin{array}{lll}
1 & 0 & 0
\end{array} 0\right. \\
0
\end{array} 1 \begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0
\end{array} 1\right]\left[\begin{array}{l}
1 \\
0
\end{array} 0 \begin{array}{l}
1
\end{array}\right]
$$

What is a subspace code?

Consider a two-dimensional subspace in a large Hilbert space. The basis of this subspace is given by the encoded states $|\overline{0}\rangle$ and $|\overline{1}\rangle$. The number of encoded qubit is 1 .

Example: Three-qubit code against a bit-flip error

$$
|\overline{0}\rangle=|000\rangle \quad|\overline{1}\rangle=|111\rangle
$$

$$
|\bar{\psi}\rangle=\alpha|\overline{0}\rangle+\beta|\overline{1}\rangle=\alpha|000\rangle+\beta|111\rangle, \quad \alpha, \beta \in \mathbb{C}, \quad|\alpha|^{2}+|\beta|^{2}=1
$$

Conside a 2^{k}-dimensional subspace in a larger space. The number of encoded qubits is k. The basis of this subspace is given by the encoded states

$$
|\overline{0} \cdots \overline{0}\rangle, \quad|\overline{0} \cdots \overline{1}\rangle, \ldots, \quad|\overline{1} \cdots \overline{1}\rangle .
$$

What are logical operators?

Logical operators should have the algebra of the Pauli operators on the encoded qubits (aka, logical qubits).

Define logical operators $\bar{X}_{i}, \bar{Z}_{i}, 1 \leq i \leq k$.

$$
\begin{aligned}
\bar{X}_{i} \bar{Z}_{i} & =-\bar{Z}_{i} \bar{X}_{i}, \quad 1 \leq i \leq k \\
\bar{X}_{i} \bar{Z}_{j} & =\bar{Z}_{j} \bar{X}_{i}, \quad 1 \leq i, j \leq k, \quad i \neq j \\
\bar{Z}|\overline{0}\rangle & =|\overline{0}\rangle, \quad \bar{Z}|\overline{1}\rangle=-|\overline{1}\rangle \\
\bar{X}|\overline{+}\rangle & =|\overline{+}\rangle, \quad \bar{X}|=-\overline{-}\rangle=-|\overline{-}\rangle
\end{aligned}
$$

What is a stabilizer code? ${ }^{2}$

Consider three groups of Pauli operators

1. Pauli group on n qubits: $\mathcal{P}_{n}:=\left\{i^{c}\left(\bigotimes_{i=1}^{n} P_{i}\right), P_{i} \in\{X, Y, Z, I\}, 0 \leq c \leq 3\right\}$.
2. Stabilizer group: $\mathcal{S}=\left\langle M_{1}, M_{2}, \ldots, M_{n-k}\right\rangle,-I \notin \mathcal{S} . \mathcal{S} \subset \mathcal{P}_{n}$. \mathcal{S} Abelian.
3. Centralizer of $\mathcal{S}: C(\mathcal{S}):=\left\{U \in \mathcal{P}_{n} ;[U, M]=0, \forall M \in \mathcal{S}\right\}$.

Definition

Stabilizer codes are a class of quantum error-correcting codes used in quantum computing. Its code space \mathcal{C} is the joint +1 eigenspace of \mathcal{S}.

[^1]
What is the code space in the stabilizer formalism?

$|\bar{\psi}\rangle$ is called a codeword in \mathcal{C}, where

$$
\mathcal{C}:=\{n \text {-qubit state }|\bar{\psi}\rangle ; M|\bar{\psi}\rangle=|\bar{\psi}\rangle, \forall M \in \mathcal{S}\}
$$

There are three important parameters for a stabilizer code: $[[n, k, d]]$.

- n is the number of physical qubits.
- k is the number of logical (or encoded) qubits.
- d is the code distance.

Example

Consider $\mathcal{S}=\langle X X, Z Z\rangle$ on two qubits. Then $\mathcal{C}=\left\{\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)\right\}$.

What are logical operators in the stabilizer code?

Consider the centralizer of \mathcal{S},

$$
C(\mathcal{S}):=\left\{U \in \mathcal{P}_{n} ;[U, M]=0, \forall M \in \mathcal{S}\right\} .
$$

- Since \mathcal{S} is Abelian, $\mathcal{S} \subset C(\mathcal{S})$. They act trivially on $|\bar{\psi}\rangle$.
- $C(\mathcal{S}) \backslash \mathcal{S}=\left\langle\bar{X}_{1}, \bar{Z}_{1}, \ldots, \bar{X}_{k}, \bar{Z}_{k}\right\rangle$, up to stabilizer generators of \mathcal{S}.

They act non-trivially on $|\bar{\psi}\rangle$.

- All other operators in \mathcal{P}_{n} anti-commute with at least one element in \mathcal{S} and map a codeword $|\bar{\psi}\rangle$ onto a state outside the code space \mathcal{C}.

Fundamental Theorem of Stabilizer Theory

Theorem

If $\mathcal{S} \subset \mathcal{P}_{n}$ has m generators, then \mathcal{C} is a 2^{k} dimensional subspace of $\left(\mathbb{C}^{2}\right)^{\otimes n}, k=n-m$.

- \mathcal{S} is maximal when $m=n$. \mathcal{S} fixes a $2^{0}=1$ dimensional subspace, i.e. a quantum state, up to scalar factor.
- More generally, we think of non-maximal stabiliser groups as a description for the embedding of $k=n-m$ "logical" qubits into a space of n "physical" qubits.

Example: Four-qubit code [[4, 2, 2]]

$$
\mathcal{S}=\langle X X X X, Z Z Z Z\rangle
$$

- What is the dimension of the code space?

Code Distance

Definition

Let d be the distance of a stabilizer code $\mathcal{C}(\mathcal{S}),|P|$ denotes the weight of $P \in \mathcal{P}_{n}$, the number of physical qubits on which P acts nontrivially. Then

$$
d:=\min _{P \in C(\mathcal{S}) \backslash \mathcal{S}}|P| .
$$

The code distance is the minimum weight of any logical operator.
Example: Four-qubit code [[4, 2, 2]]

$$
\mathcal{S}=\langle X X X X, Z Z Z Z\rangle
$$

- Find pairs of mutually anti-commuting Paulis which commute with $X X X X, Z Z Z Z$.
- What is the code distance?

Fault-tolerant Technique: Transversality

- The large-scale execution of quantum algorithms requires basic logical quantum operations to be implemented fault-tolerantly.

Definition

A transversal logical operator is not implemented by any multi-qubit physical operation acting on the same code block ${ }^{3}$.

- Transversality prevents any errors from spreading within a block, so a single physical error cannot cause a whole block of codes to go bad.

[^2]
Code Construction

Definition

Let \mathcal{P} be the single-qubit Pauli group. If M is a $k \times n$ binary matrix and $T \in \mathcal{P}$, then

$$
M^{T}:=\left\{\bigotimes_{j=1}^{n} T^{[M]_{i j}}: 1 \leq i \leq k\right\} \subset \mathcal{P}^{\otimes n}
$$

- Example: Let $T=X, k=3, n=7$.

$$
M=\left[\begin{array}{lllllll}
1 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right]_{3 \times 7}
$$

- Then $M^{T}=\left\{M_{1}, M_{2}, M_{3}\right\}$, where

$$
M_{1}=X \otimes I \otimes X \otimes I \otimes X \otimes I \otimes X=X_{1} X_{3} X_{5} X_{7}, M_{2}=X_{2} X_{3} X_{6} X_{7}, M_{2}=X_{4} X_{5} X_{6} X_{7} .
$$

Calderbank-Shor-Steane (CSS) Codes

Definition

CSS codes are stabilizer codes whose stabilizer generators are defined by two orthogonal binary matrices $G, H, G H^{T}=0$:

$$
S=\left\langle G^{X}, H^{Z}\right\rangle
$$

- The stabilizer generators can be divided into two types: X type and Z type.
- $G H^{T}=0$ implies that each X generator overlaps with a Z generator in an even number of places.
- Example: The $\llbracket 7,1,3 \rrbracket$ Steane code

$$
M=\left[\begin{array}{lllllll}
1 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right]_{3 \times 7} \quad \begin{aligned}
S & =\left\langle M^{X}, M^{Z}\right\rangle \\
& =\left\langle M_{1}^{X}, M_{2}^{X}, M_{3}^{X}, M_{1}^{Z}, M_{2}^{Z}, M_{3}^{Z}\right\rangle
\end{aligned}
$$

The ZX Calculus

- An intuitive graphical language for quantum computation.
- Every ZX diagram is composed of two types of generators:
- Z spiders, which sum over the eigenbasis of the Z operator:

$$
m\left\{\vdots(\alpha \vdots \vdots\rangle^{n}:=|0\rangle^{\otimes n}\left\langle\left. 0\right|^{\otimes m}+e^{i \alpha} \mid 1\right\rangle^{\otimes n}\left\langle\left. 1\right|^{\otimes m},\right.\right.
$$

- X spiders, which sum over the eigenbasis of the X operator:

$$
m\left\{\vdots @ \vdots \vdots n:=|+\rangle^{\otimes n}\left\langle+\left.\right|^{\otimes m}+e^{i \alpha} \mid-\right\rangle^{\otimes n}\left\langle-\left.\right|^{\otimes m} .\right.\right.
$$

Definition

A ZX diagram is phase-free if its spiders have no phases.

The ZX Calculus is Universal

Any linear map from m to n qubits corresponds exactly to a ZX diagram.

- A ZX diagram with 0 input and output represents a scalar.

$$
\begin{array}{rlrl}
O & =2 & O-\infty & =\sqrt{2} \\
\pi & =0 & \pi-\alpha & =\sqrt{2} e^{i \alpha} \\
\alpha & =1+e^{i \alpha} & \infty & =\frac{1}{\sqrt{2}}
\end{array}
$$

- A ZX diagram with 0 input and 1 output represents a state.
- A ZX diagram with the same number of inputs and outputs represents a unitary.

$$
- \text { - }
$$

Represent the CNOT Gate in ZX

$$
\begin{aligned}
& \text { Proof. Horizontally composing the two diagrams below, } \\
& \text { we get } \\
& =\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \otimes \frac{1}{\sqrt{2}}\left(\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0
\end{array}\right)=\frac{1}{\sqrt{2}}\left(\begin{array}{llllllll}
1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 0
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 1
\end{array}\right) \otimes\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \\
& =0
\end{aligned}
$$

Therefore, $C N O T=\sqrt{2}$

The ZX Calculus is Complete

If two ZX diagrams represent the same linear map, then there should be a sequence of rewrites that transforms one diagram into the other.
(fusion)

(id)

$$
-\mathrm{O}=\square=-\mathrm{O}
$$

(color change)

Figure: The minimal complete rule set for ZX calculus. ${ }^{4}$

[^3]
Additional ZX Rules

These rules are derivable from the minimal rule set. Used extensively in this work.

Phase-free ZX Diagrams are CSS Codes

Consider an $\llbracket n, k, d \rrbracket$ CSS code with X-type stabilizers $\left\{S_{1}^{X}, S_{2}^{X}, \ldots, S_{m_{1}}^{X}\right\}$ and logical operators $\left\{\bar{X}_{1}, \bar{X}_{2}, \ldots, \bar{X}_{k}\right\}$, it has a unique ZX normal form ${ }^{5}$.

Example: The Steane code

- $n=7, k=1, d=3$.
- $3 X$-type stabilizers:

$$
\begin{aligned}
& S_{1}^{X}=X_{2} X_{3} X_{6} X_{7} \\
& S_{2}^{X}=X_{1} X_{3} X_{5} X_{7} \\
& S_{3}^{X}=X_{4} X_{5} X_{6} X_{7}
\end{aligned}
$$

- 1 logical X operator: $\bar{X}=X_{1} X_{4} X_{5}$

Figure: The Steane code encoder in ZX normal form.

[^4]
CSS Subsystem Codes ${ }^{6}$

Subsystem codes are stabilizer codes where some of the logical qubits are not used for information storage and processing. These logical qubits are called gauge qubits.

Definition

Let G be an arbitrary subgroup of the Pauli group \mathcal{P}. A subsystem code defined by G has a group S of stabilizers and a set L_{g} of gauge operators, where

$$
S=C(G) \cap G, \text { where } C(G)=\{P \in \mathcal{P}: P M=M P, \forall M \in G\}, \quad L_{g}=G \backslash S
$$

- If G is Abelian, $G=S$ and $L_{g}=\emptyset$.
- When $L_{g} \neq \emptyset$, it contains pairs of anticommuting Pauli operators.

[^5]
Normal Form for CSS Subsystem Codes

Given a stabilizer tableau of a CSS subsystem code, the corresponding ZX normal form can be constructed through the following steps:

1. For each physical qubit, introduce an X spider.
2. For each X-type stabilizer S_{i}^{X}, logical operator \bar{X}_{j} and gauge operator $L_{g_{t}}^{x}$, introduce a Z spider and connect it to all X spiders where this operator has support.
3. Give each X spider an output wire.
4. Give each Z spider representing \bar{X}_{j} an input wire.
5. Give all Z spiders representing $L_{g_{t}}^{x}$ a joint arbitrary input state (i.e., a density operator ρ).

Pushing through the Encoder

For any $\llbracket n, k, d \rrbracket$ CSS code, its encoder map E is of the form:

E is an isometry. $E^{\dagger} E=I$.

Lemma

In any CSS code, all $\overline{X_{i}}$ and $\overline{Z_{i}}$ must be multi-qubit Pauli operators.
Example: For the $\llbracket 4,2,2 \rrbracket$ code, $\overline{X_{1}}=X_{1} X_{2}$:

Physically Implement a Logical Operator

Proposition

Let E be the encoder of a CSS code. For any $Z X$ diagram L on the left-hand side of E, one can write down a corresponding $Z X$ diagram P on the right-hand side of E, such that $E L=P E$. In other words, P is a valid physical implementation of L on that CSS code.

- Unfuse all spiders on logical qubit wires of L, whenever they are not phase-free or have more than one external wire.

- For each X spider on logical qubit wires, rewriting E to be in $Z X$ normal form and then applying the strong complementarity (sc) rule.

Switch between Two CSS Codes

	QRM(3)	QRM(4)
Code parameters	$\llbracket 7,1,3 \rrbracket$	$\llbracket 15,1,3 \rrbracket$
Logical operators	$\bar{X}=X_{1} X_{4} X_{5}, \bar{Z}=Z_{1} Z_{4} Z_{5}$	$\bar{X}=X_{1} X_{4} X_{5}, \bar{Z}=Z_{1} Z_{4} Z_{5}$
Other transversal gates	$C X, S, \mathrm{H}$	$C X, S, T$
Towards universality	Need transversal logical T	Need transversal logical H
Topology	Triangle, 2D	Tetrahedron, 3D

(a) $\operatorname{QRM}(3)$ as a 2D color code.
(b) QRM(4) as a 3D color code.

Steane Code \& Quantum Reed-Muller Code

QRM(3) \& $\mathrm{QRM}(4)$ are stabilizer codes defined by the stabilizers $\mathbb{S}_{3} \& \mathbb{S}_{4}$ respectively.

$$
\begin{gathered}
\mathbb{S}_{3}=\left\langle M^{X}, M^{Z}\right\rangle, \quad \mathbb{S}_{4}=\left\langle N^{X}, N^{Z}, H^{Z}, T^{Z}\right\rangle, \text { where } \\
M=\left[\begin{array}{lllllll}
1 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right]_{3 \times 7}, \quad N=\left[\begin{array}{cccc}
M & 0 & M \\
\mathbf{0} & 1 & \mathbf{1}
\end{array}\right]_{4 \times 15}, \quad H=\left[\begin{array}{lllllllllll}
M & \mathbf{0}
\end{array}\right]_{3 \times 15} \\
T=\left[\begin{array}{lllllllllllllll}
1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right]_{3 \times 15}
\end{gathered}
$$

(a) $\operatorname{QRM}(3)$ as a 2D color code.

(b) QRM(4) as a 3D color code.

- $\mathbb{S}_{3}=\left\langle M^{X}, M^{Z}\right\rangle$.
- Coloured face $\mapsto X / Z$ stabilizer generator.
- $\operatorname{QRM}(3)$ is self-dual.
- $\bar{X}=X_{1} X_{4} X_{5}, \bar{Z}=Z_{1} Z_{4} Z_{5}$.
- $d=3$.
- $\mathbb{S}_{4}=\left\langle N^{X}, N^{Z}, H^{Z}, T^{Z}\right\rangle$.
- Coloured face $\mapsto Z$ stabilizer generator.
- Coloured cell $\mapsto X / Z$ stabilizer generator.
- $\bar{X}=X_{1} X_{4} X_{5}, \bar{Z}=Z_{1} Z_{4} Z_{5}$.
- $d=3$.

Extended Quantum Reed-Muller Code: EQRM

EQRM is defined by the stabilizer group $\mathbb{S}_{E}=\left\langle N^{X}, N^{z}, H^{z}, H^{X}\right\rangle$, where

$$
M=\left[\begin{array}{lllllll}
1 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right]_{3 \times 7}, \quad N=\left[\begin{array}{ccc}
M & 0 & M \\
\mathbf{0} & 1 & 1
\end{array}\right]_{4 \times 15}, \quad H=\left[\begin{array}{cc}
M & \mathbf{0}
\end{array}\right]_{3 \times 15}
$$

- Let $|\overline{0}\rangle$ and $|\overline{1}\rangle$ be the logical 0 and 1 encoded in QRM(3).
- Let $|\bar{\psi}\rangle=\alpha|\overline{0}\rangle+\beta|\overline{1}\rangle$ be the single-qubit logical information encoded in QRM(3).

Lemma

An EQRM codeword $|\bar{\Phi}\rangle$ can be decomposed as

$$
|\bar{\phi}\rangle=|\bar{\psi}\rangle \otimes|\phi\rangle, \text { where }
$$

$|\phi\rangle=\frac{1}{\sqrt{2}}(|0\rangle|\overline{0}\rangle+|1\rangle|\overline{1}\rangle)$.

Code Switching ${ }^{7,8}$

- Codes with complementary fault-tolerant gate sets are switched between each other to realize a universal set of logical operations.
- Fault-tolerantly switch between QRM(3) and QRM(4)

${ }^{7}$ Anderson, J. T., Duclos-Cianci, G., \& Poulin, D. (2014). Fault-tolerant conversion between the steane and reed-muller quantum codes. Physical review letters, 113(8), 080501.
${ }^{8}$ Quan, D. X., Zhu, L. L., Pei, C. X., \& Sanders, B. C. (2018). Fault-tolerant conversion between adjacent Reed-Muller quantum codes based on gauge fixing. Journal of Physics A: Mathematical and Theoretical, 51(11), 115305.

Recap: Normal Form for CSS Subsystem Codes

Definition

Let G be an arbitrary subgroup of the Pauli group \mathcal{P}. A subsystem code defined by G has a group S of stabilizers and a set L_{g} of gauge operators, where

$$
S=C(G) \cap G, \text { where } C(G)=\{P \in \mathcal{P}: P M=M P, \forall M \in G\}, \quad L_{g}=G \backslash S
$$

Subsystem Quantum Reed-Muller Code: SQRM

Definition

SQRM is defined by the gauge group:

$$
G=\left\langle N^{X}, N^{Z}, H^{Z}, H^{X}, T^{Z}\right\rangle
$$

- The associated stabilizer group, gauge operators and logical operators are:

$$
\mathbb{S}_{S}=\left\langle N^{X}, N^{Z}, H^{Z}\right\rangle_{11}, \quad L_{g}=\left\langle H^{X}, T^{Z}\right\rangle_{6}, \quad \bar{L}=\langle\bar{X}, \bar{Z}\rangle_{2}
$$

- For brevity, we will use $L_{g}^{X}=H^{X}$ and $L_{g}^{Z}=T^{Z}$.
\Rightarrow SQRM has 1 logical qubit and 3 gauge qubits.
\Rightarrow Alternatively, \mathbb{S}_{S} stabilizes the $\llbracket 15,4,3 \rrbracket$ CSS code, with logical operators $\left\{L_{g}, \bar{L}\right\}$.

Construct SQRM from QRM(4) \& EQRM

- QRM(4): $\mathbb{S}_{4}=\left\langle N^{X}, N^{Z}, H^{Z}, T^{Z}\right\rangle$
- EQRM: $\mathbb{S}_{E}=\left\langle N^{x}, N^{z}, H^{z}, H^{x}\right\rangle$
- SQRM: $\left(G, \mathbb{S}_{S}, L_{g}, \bar{L}\right)$, where

$$
\begin{aligned}
G & =\mathbb{S}_{4} \cup \mathbb{S}_{E}=\left\langle N^{x}, N^{z}, H^{z}, H^{x}, T^{Z}\right\rangle \\
\mathbb{S}_{S} & =\mathbb{S}_{4} \cap \mathbb{S}_{E}=\left\langle N^{x}, N^{Z}, H^{z}\right\rangle \\
L_{g} & =G \backslash \mathbb{S}_{S}=\left\langle H^{x}, T^{Z}\right\rangle \\
\bar{L} & =\langle\bar{X}, \bar{Z}\rangle
\end{aligned}
$$

Construct SQRM from QRM(4) \& EQRM

- QRM(4): $\mathbb{S}_{4}=\left\langle N^{X}, N^{Z}, H^{Z}, T^{Z}\right\rangle$
- EQRM: $\mathbb{S}_{E}=\left\langle N^{X}, N^{Z}, H^{Z}, H^{X}\right\rangle$
- SQRM: $\left(G, \mathbb{S}_{S}, L_{g}, \bar{L}\right)$, where

$$
\begin{aligned}
G & =\mathbb{S}_{4} \cup \mathbb{S}_{E}=\left\langle N^{X}, N^{Z}, H^{z}, H^{X}, T^{Z}\right\rangle \\
\mathbb{S}_{S} & =\mathbb{S}_{4} \cap \mathbb{S}_{E}=\left\langle N^{x}, N^{Z}, H^{z}\right\rangle \\
L_{g} & =G \backslash \mathbb{S}_{S}=\left\langle H^{x}, T^{Z}\right\rangle \\
\bar{L} & =\langle\bar{X}, \bar{Z}\rangle
\end{aligned}
$$

Construct SQRM from QRM(4) \& EQRM

- $\operatorname{QRM}(4): \mathbb{S}_{4}=\left\langle N^{X}, N^{Z}, H^{Z}, T^{Z}\right\rangle$
- EQRM: $\mathbb{S}_{E}=\left\langle N^{X}, N^{Z}, H^{Z}, H^{X}\right\rangle$
- SQRM: $\left(G, \mathbb{S}_{S}, L_{g}, \bar{L}\right)$, where

$$
\begin{aligned}
G & =\mathbb{S}_{4} \cup \mathbb{S}_{E}=\left\langle N^{X}, N^{Z}, H^{z}, H^{X}, T^{Z}\right\rangle \\
\mathbb{S}_{S} & =\mathbb{S}_{4} \cap \mathbb{S}_{E}=\left\langle N^{x}, N^{Z}, H^{z}\right\rangle \\
L_{g} & =G \backslash \mathbb{S}_{S}=\left\langle T^{Z}, H^{x}\right\rangle \\
\bar{L} & =\langle\bar{X}, \bar{Z}\rangle
\end{aligned}
$$

Construct SQRM from QRM(4) \& EQRM

- $\operatorname{QRM}(4): \mathbb{S}_{4}=\left\langle N^{X}, N^{Z}, H^{Z}, T^{Z}\right\rangle$
- EQRM: $\mathbb{S}_{E}=\left\langle N^{X}, N^{Z}, H^{Z}, H^{X}\right\rangle$
- SQRM: $\left(G, \mathbb{S}_{S}, L_{g}, \bar{L}\right)$, where

$$
\begin{aligned}
G & =\mathbb{S}_{4} \cup \mathbb{S}_{E}=\left\langle N^{x}, N^{Z}, H^{z}, H^{x}, T^{Z}\right\rangle \\
\mathbb{S}_{S} & =\mathbb{S}_{4} \cap \mathbb{S}_{E}=\left\langle N^{x}, N^{Z}, H^{Z}\right\rangle \\
L_{g} & =G \backslash \mathbb{S}_{S}=\left\langle T^{Z}, H^{x}\right\rangle \\
\bar{L} & =\langle\overline{\mathbf{X}}, \overline{\mathbf{Z}}\rangle
\end{aligned}
$$

Forward \& Backward Switching ${ }^{9}$

- Forward conversion: $\mathrm{EQRM} \Rightarrow \operatorname{QRM}(4) \mathbb{S}_{4}$
- Backward conversion: $\mathrm{QRM}(4) \Rightarrow \mathrm{EQRM} \mathbb{S}_{\mathrm{E}}$

[^6]
Gauge Fixing of the SQRM Code

Lemma

When the three gauge qubits are in the $|\overline{000}\rangle$ state, SQRM is fixed to QRM(4).

- When the three gauge qubits are in the $|\overline{+++}\rangle$ state, SQRM is fixed to EQRM.
\Rightarrow Start with the XZ normal form of the SQRM encoder.

Gauge Fixing SQRM Switches between QRM(4) and EQRM

Step 1: Measure a commuting subset of gauge operators.
E.g., measure three X-type gauge operators L_{g}^{X} and obtain the corresponding outcomes $k_{1}, k_{2}, k_{3} \in\{0,1\}$.
Remark: $0 \mapsto+1$ and $1 \mapsto-1$.
Step 2: When $k_{i}=1$, apply some correction operator $L_{g_{i}}^{Z}$ as the gauge qubit i has collapsed to the wrong state $|-\rangle$.
\Rightarrow All three gauge qubits are set to the desired state $|+\rangle$.

Example 1: Measure an X-type stabilizer

$$
X|+\rangle=|+\rangle, X|-\rangle=-|-\rangle
$$

Example 2: Measure a Z-type stabilizer

$$
\begin{gathered}
Z|0\rangle=|0\rangle, \quad Z|1\rangle=-|1\rangle \\
|0\rangle \stackrel{X}{\longleftrightarrow}|1\rangle
\end{gathered}
$$

Syndrome-determined Fixing Operation

- Measuring L_{g}^{X} adds these operators into the stabilizer group and removes stabilizers L_{g}^{Z}. Moreover, the fixing operations be readily read-off from the graphical derivation.

Open Problems

Through the lens of ZX calculus, we will

- Present CSS code deformations ${ }^{10}$.
- Understand code concatenation ${ }^{11}$
- Derive new good QECCs from the existing QECCs ${ }^{12}$.
- Unify fault-tolerant protocols for stabilizer codes ${ }^{13,},{ }^{14}$.

[^7]Thank you!

Example: $\bar{X}=X_{4} X_{5} X_{6}$

[^0]: ${ }^{1}$ Gottesman, D. Quantum Error Correction and Fault Tolerance (Part 1) - CSSQI 2012.

[^1]: ${ }^{2}$ Gottesman, D. (1997). Stabilizer codes and quantum error correction. California Institute of Technology.

[^2]: ${ }^{3}$ Gottesman, D. (2000). Fault-tolerant quantum computation with local gates. Journal of Modern Optics, 47(2-3), 333-345.

[^3]: ${ }^{4}$ Vilmart, R. (2019, June). A near-minimal axiomatisation of zx-calculus for pure qubit quantum mechanics. In 2019

[^4]: ${ }^{5}$ Kissinger, A. (2022). Phase-free ZX diagrams are CSS codes (... or how to graphically grok the surface code). arXiv preprint arXiv:2204.14038.

[^5]: ${ }^{6}$ David Kribs, Raymond Laflamme \& David Poulin (2005): Unified and Generalized Approach to Quantum Error Correction. Physical Review Letters, 94.

[^6]: ${ }^{9}$ Paetznick, A., \& Reichardt, B. W. (2013). Universal fault-tolerant quantum computation with only transversal gates and error correction. Physical review letters, 111(9), 090505.

[^7]: ${ }^{10}$ Vuillot, C., Lao, L., Criger, B., Almudéver, C. G., Bertels, K., \& Terhal, B. M. (2019). Code deformation and lattice surgery are gauge fixing. New Journal of Physics, 21(3), 033028.
 ${ }^{11}$ Knill, E., \& Laflamme, R. (1996). Concatenated quantum codes. arXiv preprint quant-ph/9608012.
 ${ }^{12}$ Vasmer, M., \& Kubica, A. (2022). Morphing quantum codes. PRX Quantum, 3(3), 030319.
 ${ }^{13}$ Bombin, H., Litinski, D., Nickerson, N., Pastawski, F., \& Roberts, S. (2023). Unifying flavors of fault tolerance with the ZX calculus. arXiv preprint arXiv:2303.08829.
 ${ }^{14}$ Khesin, A. B., Lu, J. Z., \& Shor, P. W. (2023). Graphical quantum Clifford-encoder compilers from the ZX calculus. arXiv preprint arXiv:2301.02356.

