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Motivation

Several structure-semantics adjunctions and monad-theory
equivalences have been established in category theory.

In [7], Lawvere established a structure-semantics adjunction between
Lawvere theories and tractable Set-valued functors, which was later
generalized by Linton [8]. For a complete and well-powered closed
category V , Dubuc [4] proved a structure-semantics adjunction
between V -theories and tractable V -valued V -functors.
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Motivation

Linton [8] also showed that there is an equivalence between Lawvere
theories and finitary monads on Set. Lucyshyn-Wright [10]
generalized this by showing that if J ↪→ V is any eleutheric system
of arities in a closed category V , then there is an equivalence between
J -theories and J -ary V -monads on V .

Building on earlier work of Power and Nishizawa [14, 13], Bourke and
Garner [2] recently showed that if J ↪→ C is any small subcategory
of arities in a locally presentable V -category C over a locally
presentable closed category V , then there is an equivalence between
J -theories and J -nervous V -monads on C .

Neither equivalence subsumes the other; can both equivalences, along
with the aforementioned structure-semantics adjunctions, be captured
by a common framework that also yields new examples?
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Objectives

That is the subject of this talk: we have developed a general
framework for studying enriched structure-semantics adjunctions and
monad-theory equivalences for subcategories of arities, which
specializes to recover the aforementioned results and also yields new
examples.

More specifically, given a subcategory of arities J ↪→ C in a
V -category C over a closed category V , we will identify hypotheses
on these data that entail a structure-semantics adjunction, a
monad-theory equivalence, a rich theory of presentations for monads
and theories, and more.

J. Parker (joint with R. Lucyshyn-Wright) Enriched structure-semantics adjunctions and monad-theory...



Basic definitions

We fix a subcategory of arities j : J ↪→ C , i.e. a full and dense
sub-V -category, in a V -category C over a symmetric monoidal closed
category V . Since we do not assume that J is small or that V is
(co)complete, we also fix a suitable universe extension V ↪→ V ′.

We have a fully faithful V ′-functor

Nj : C → [J op,V ]

NjC = C (j−,C )

that we call the j-nerve V ′-functor. The presheaves in its essential
image are called j-nerves.
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Pretheories and their algebras

(Linton [8], Diers [3], Bourke-Garner [2]) A J -pretheory is just an
identity-on-objects V -functor τ : J op → T , while a J -theory is a
J -pretheory T such that each T (J, τ−) : J op → V (J ∈ obJ ) is
a j-nerve. We have the category PrethJ (C ) of J -pretheories and
its full subcategory ThJ (C ) of J -theories.

Let T be a J -pretheory. The V ′-category T -Alg of (concrete)
T -algebras is defined by the following pullback in V ′-CAT:

T -Alg [T ,V ]

C [J op,V ].

[τ,1]UT

Nj
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Amenable subcategories of arities

A J -pretheory T is admissible if the V ′-category T -Alg is actually
a V -category, and UT : T -Alg→ C has a left adjoint.

The subcategory of arities j : J ↪→ C is amenable if every
J -theory is admissible, and is strongly amenable if every
J -pretheory T is admissible.
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J -tractable V -categories

A J -tractable V -category over C is a V -category G : A → C
over C such that C admits the weighted limit {C (J,G−),G} for
each J ∈ obJ . Then J -Tract(C ) is the full subcategory of
V -CAT/C consisting of the J -tractable V -categories over C .

Let Pretha
J (C ) be the full subcategory of PrethJ (C ) consisting of

the admissible J -pretheories. We define a semantics functor

Sem : Pretha
J (C )op →J -Tract(C )

by

SemT =
(
UT : T -Alg→ C

)
for each admissible J -pretheory T .
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J -structure

Let G : A → C be a J -tractable V -category over C . We define a
J -theory τG : J op → StrG , the J -structure of G , by taking the
(bijective-on-objects, fully faithful) factorization of the composite
V ′-functor

J op C op [A ,V ].

StrG

jop NGop

τG

(Since G is J -tractable, StrG is indeed a V -category and moreover
a J -theory).
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The structure-semantics adjunction

A J -algebraic V -category over C is a V -category over C in the
essential image of Sem; we let J -Alg(C ) be the full subcategory of
J -Tract(C ) consisting of these objects.

Theorem

Let j : J ↪→ C be an amenable subcategory of arities. The semantics
functor Sem : Pretha

J (C )op →J -Tract(C ) has a left adjoint Str that
sends each J -tractable V -category over C to its J -structure. This
adjunction is idempotent, and restricts to an adjoint equivalence

ThJ (C )op J -Alg(C ).
Sem

Str
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The monad-pretheory adjunction

Given an admissible J -pretheory T , the V -functor
UT : T -Alg→ C is strictly monadic, and hence Sem corestricts to
the full subcategory Monadic!(C ) ↪→J -Tract(C ) of strictly
monadic V -categories over C .

Let J be amenable. Because Monadic!(C ) 'Mnd(C )op, the
structure-semantics adjunction yields an idempotent adjunction

Pretha
J (C ) Mnd(C ),

Ψ

Φ
`

where Φ sends a V -monad T to its Kleisli J -theory, while Ψ sends
an admissible J -pretheory T to the free T -algebra V -monad on C .
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The monad-theory equivalence

A V -monad T on C is J -nervous if T ∼= ΨT for some admissible
J -pretheory T (there is also a more technical definition that does not
involve pretheories).

Theorem

Let j : J ↪→ C be an amenable subcategory of arities. The idempotent
monad-pretheory adjunction Ψ a Φ restricts to an adjoint equivalence

ThJ (C ) MndJ (C )
Ψ

Φ

between J -theories and J -nervous V -monads, which commutes with
semantics in an appropriate sense. Also ThJ (C ) ↪→ Pretha

J (C ) is
reflective, while MndJ (C ) ↪→Mnd(C ) is coreflective.

J. Parker (joint with R. Lucyshyn-Wright) Enriched structure-semantics adjunctions and monad-theory...



Additional consequences of strong amenability

We now suppose that V is complete and cocomplete, that C is cocomplete
and cotensored, and that j : J ↪→ C is small and strongly amenable.

Proposition

PrethJ (C ),ThJ (C ), and MndJ (C ) are all cocomplete, and small
colimits therein are sent to limits in V -CAT/C by the respective semantics
functors.
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Monadicity over signatures

A J -signature is a V -functor Σ : obJ → C , i.e. an obJ -indexed
family of objects of C . We have a category SigJ (C ) of J -signatures,
and a forgetful functor U : MndJ (C )→ SigJ (C ) defined by

UT = (TJ)J∈J .

Theorem

The functor U : MndJ (C )→ SigJ (C ) is monadic, and hence every
J -nervous V -monad has a J -presentation. Moreover, every
J -presentation P presents a J -nervous V -monad TP with
TP -Alg ∼= P-Alg in V -CAT/C .
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Some other nice consequences

We now also suppose that T -Alg has conical coequalizers of reflexive
pairs for each J -pretheory T .

Theorem

Let H : T → U be a morphism of J -pretheories. Then the algebraic
V -functor H∗ = Sem H : U -Alg→ T -Alg is strictly monadic.

Theorem

Let T be a J -pretheory. Then the full sub-V -category T -Alg ↪→ [T ,V ]
is reflective.
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Summary so far...

If j : J ↪→ C is amenable, then we have a structure-semantics
adjunction Str a Sem : Pretha

J (C )op →J -Tract(C ); a
monad-theory equivalence ThJ (C ) 'MndJ (C ); and the reflectivity
of ThJ (C ) ↪→ Pretha

J (C ) and coreflectivity of
MndJ (C ) ↪→Mnd(C ).

If j : J ↪→ C is small and strongly amenable and C ,V are
sufficiently (co)complete, then we also have a monad-pretheory
adjunction Ψ a Φ : Mnd(C )→ PrethJ (C ); the (algebraic)
cocompleteness of PrethJ (C ),ThJ (C ),MndJ (C ); a rich theory of
presentations for J -nervous V -monads (and hence J -theories); the
strict monadicity of algebraic V -functors; and the reflectivity of
T -algebras in presheaves (and more).
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First example: eleutheric subcategories of arities

A subcategory of arities j : J ↪→ C is eleutheric [10, 12] if every
V -functor H : J → C has a left Kan extension along j that is
preserved by each C (J,−) : C → V (J ∈ obJ ). For example:

I The full sub-V -category of enriched α-presentable objects in a locally
α-presentable V -category C over a locally α-presentable V .

I The “strongly finitary” subcategory of arities j : SF(V ) ↪→ V
consisting of the finite copowers of the terminal object in a complete
and cocomplete cartesian closed V .

I Just the unit object {I} ↪→ V in any closed category V .
I The “unrestricted” subcategory of arities 1C : C ↪→ C in any

V -category C .
I The Yoneda embedding y : A op ↪→ [A ,V ] for any small V -category

A .
I Any free Ψ-cocompletion j : J ↪→ C of a small V -category J under

a class of small weights Ψ.
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First example: eleutheric subcategories of arities

Theorem

Let j : J ↪→ C be an eleutheric subcategory of arities. Then J is
amenable.

We will observe below that most of the above examples satisfy an
additional boundedness property that also makes them strongly
amenable.

If j = 1V : V → V , then we recover Dubuc’s structure-semantics
adjunction [4] between V -theories and tractable V -valued
V -functors, and his equivalence between V -theories and arbitrary
V -monads on V .

If C = V and j : J ↪→ V is an eleutheric system of arities (i.e.
contains I and is closed under ⊗), then we recover Lucyshyn-Wright’s
equivalence [10] between J -theories and J -ary V -monads on V .

J. Parker (joint with R. Lucyshyn-Wright) Enriched structure-semantics adjunctions and monad-theory...



Second example: bounded subcategories of arities
For this example, we make the following background assumptions:

V is complete and cocomplete and has an enriched factorization
system (E ,M ) [9].

C is cocomplete and cotensored and has a compatible enriched
factorization system (EC ,MC ) [12], and C has arbitrary
EC -cointersections; moreover, (EC ,MC ) is proper or C is
EC -cowellpowered.

A small subcategory of arities j : J ↪→ C is bounded if each J ∈ obJ is
bounded (in the sense of [12]). If C is a locally bounded V -category [11]
over a locally bounded closed category V , then any small J ↪→ C is
automatically bounded.

Theorem

Let j : J ↪→ C be a (small) subcategory of arities that is contained in
some bounded and eleutheric subcategory of arities. Then J is strongly
amenable, and T -Alg has small conical colimits for every J -pretheory T .
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Second example: bounded subcategories of arities

For example: most of the above examples of eleutheric subcategories
of arities are also bounded, and hence strongly amenable. Also, any
small subcategory of arities in a locally presentable V -category C
over a locally presentable V is contained in a bounded and eleutheric
subcategory of arities, from which we recover the monad-pretheory
adjunction and monad-theory equivalence of Bourke and Garner [2].

By dropping the requirement of eleuthericity and strengthening the
notion of boundedness in certain ways, we can also obtain further
examples of strongly amenable subcategories of arities.
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Locally bounded examples

A V -category C is V -sketchable if C is equivalent to the V -category
Φ-Cts(T ,V ) of models of a small Φ-theory T for a class of small weights
Φ.

Theorem

Let j : J ↪→ C be any small subcategory of arities in a V -sketchable
V -category C over a locally bounded closed category V . Then J is
strongly amenable. If V is E -cowellpowered, then T -Alg is locally
bounded (and hence cocomplete) for any J -pretheory T , and T-Alg is
locally bounded for any J -nervous V -monad T.

This provides a second method for recovering the main results of
Bourke-Garner [2], because every locally presentable V is locally bounded
and every locally presentable V -category C is V -sketchable [6].
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Locally bounded examples

Since V itself is V -sketchable, we may take C = V and obtain the
following:

Theorem

Let j : J ↪→ V be any small subcategory of arities in a locally bounded
closed category V . Then J is strongly amenable, and T -Alg is
cocomplete for each J -pretheory T .

As shown in [11], we have the following examples of locally bounded
closed categories: any locally presentable closed category; any cocomplete
locally cartesian closed category with a small generator (e.g. Dubuc’s
concrete quasitoposes [5] and the convenient categories of smooth spaces
of [1]); any topological category over Set with its canonical (“separate
continuity”) symmetric monoidal closed structure (e.g. Top and Meas);
and many convenient (cartesian closed) categories of topological spaces.
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In summary...

We have developed a general framework for enriched
structure-semantics adjunctions and monad-theory equivalences for
subcategories of arities. If J is amenable (every J -theory has free
algebras), then we have a structure-semantics adjunction

Str a Sem : Pretha
J (C )op →J -Tract(C )

and a monad-theory equivalence ThJ (C ) 'MndJ (C ).

If C ,V are sufficiently (co)complete and J is small and strongly
amenable (every J -pretheory has free algebras), then we also have a
monad-pretheory adjunction Ψ a Φ : Mnd(C )→ PrethJ (C ) and a
rich theory of presentations and algebraic colimits for J -theories and
J -nervous V -monads.
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In summary...

Many previously studied subcategories of arities are (strongly)
amenable, from which we obtain many of the enriched
structure-semantics adjunctions and monad-theory equivalences
already established in the literature.

Every small subcategory of arities in a V -sketchable V -category C
over a locally bounded closed category V is strongly amenable; in
particular, we may take C = V itself. Examples of such V include
many convenient categories of spaces.
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Thank you!

E-mail: parkerj@brandonu.ca
Website: www.jasonparkermath.com
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