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Overview: tangent categories

Tangent categories axiomatize the existence of a “tangent bundle” for
each object in a category.

The canonical example is the category of smooth manifolds.
At a point of a smooth manifold, the tangent space at that point is
the collection of all tangent vectors to that point:

the tangent bundle is the collection of all the tangent spaces; it
can itself be given the structure of a smooth manifold.

This construction is functorial; the action of this functor on smooth maps
is the derivative (in each local chart).

Moreover, there are several natural transformations and categorical
limit properties related to this functor.
These categorical properties are axiomatized into a tangent
category.
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Properties and examples

The tangent category axioms are quite powerful; over the last few years
we’ve discovered how to define many differential geometry concepts in an
arbitrary tangent category, such as

Vector fields and vector bundles

Differential forms and de Rham cohomology

Connections and curvature

Many of our initial examples of tangent categories were generalizations of
the category of smooth manifolds, such as

Convenient manifolds (a type of infinite-dimensional manifold)

C∞-rings

Models of synthetic differential geometry (SDG)

But there are also non-standard examples such as:

The differential λ-calculus

Goodwilllie functor calculus (an “∞-tangent category”1)

1“Tangent infinity-categories and Goodwillie calculus” by Bauer, Burke, and Ching
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Tangent categories and Algebraic Geometry

We’ve also known for quite a while that there are examples of tangent
categories in algebraic geometry...but not done anything with them (or
really understood what was going on with their structure).

But they are very interesting, because their “tangent bundles” can
have singularities: places where the dimension of the tangent space
changes!

For example, the solutions of y2 − x3 = 0 and y2 − x3 − x2 = 0

both have tangent spaces of “dimension 1” at all points except the
origin, where the tangent space is of “dimension 2”.

The fact that this can be seen as an example of a tangent category thus
shows that tangent categories can capture both “smooth” and
“non-smooth” examples of tangent functors!



Introduction Review of tangent categories Algebraic geometry done quickly Tangent structure of affine schemes Conclusion

Plan for the talk(s)

Goal: better understand how tangent categories relate to algebraic
geometry; specifically, understand the (tangent) category structure of

affine schemes over R = (commutative R-algebras)op.

Plan for today:

1 Brief review of tangent categories

2 Quick entry into algebraic geometry via (commutative R-algebras)op

3 The tangent structure of this category, and “tangent spaces” of
some of its objects

Next time: how tangent category theory (eg., vector fields, differential
bundles, connections) applied to this example relates to existing work in
algebraic geometry. Still on-going, lots to do here!
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Tangent category definition

A tangent category2 consists of a category X with:

(Tangent functor) an endofunctor T : X −→ X;

(Projection) a natural transformation p : T −→ 1X;

(Zero tangent vector) a natural transform 0 : 1X −→ T ;

(Addition of tangent vectors) a natural transformation + : T2 −→ T ,
where T2M is the pullback of pM along itself:

T2M //

��

TM

pM

��
TM

pM
// M

(Vertical lift) a natural transformation ℓ : T −→ T ◦ T =: T 2;

(Canonical flip) a natural transformation c : T 2 −→ T 2;

satisfying various axioms.

2Rosický 1984, modified Cockett/Cruttwell 2014
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Example: “multivariable calculus”

There is a tangent category consisting of objects open subsets of Rn’s,
and maps smooth maps between them. It has tangent functor T given
by:

for U ⊆ Rn, TU := U × Rn.

for f : (U ⊆ Rn) −→ (V ⊆ Rm), T (f )(x , v) := J[f ](x) · v (where J is
the Jacobian)

And natural transformations:

(Projection) p(x , v) := x

(Zero) 0(x) := (x , 0)

(Addition) +(x , v1, v2) := (x , v1 + v2)

(Lift) ℓ(x , v) := (x , 0, 0, v)

(Flip) c(x , v1, v2,w) := (x , v2, v1,w)

Many of the axioms follow from rules of calculus, eg., functoriality of T
is the chain rule, and naturality of the flip is the symmetry of mixed

partial derivatives: ∂2f
dxdy = ∂2f

dydx .
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Other Examples

1 Smooth manifolds with their tangent bundle (with structure locally
given as on the previous slide - but this structure need not persist
globally, ie., TM is usually not just M × Rn).

2 Convenient manifolds (a certain type of infinite-dimensional
manifold) with their kinematic tangent bundle.

3 The infinitesimally linear objects in a model of synthetic differential
geometry (SDG).

4 The category of C∞-rings.

5 Abelian functor calculus gives a tangent category, and Goodwillie
functor calculus gives an (infinity) tangent category.

6 The vector fields in any tangent category form a new tangent
category (as do many other constructions).



Introduction Review of tangent categories Algebraic geometry done quickly Tangent structure of affine schemes Conclusion

Tangent spaces

If we have a tangent category, how can we recover the individual tangent
spaces of an object?

Definition

If (X,T ) is a tangent category with a terminal object 1, and a : 1 −→ M
is a (categorical) point of an object M, then the tangent space of M at
a, TaM, is the pullback

TaM //

��

TM

pM

��
1

a
// M

(assuming it exists and is preserved by T ).
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What is Algebraic Geometry?

Classically, it is about the geometric properties of the set of common
zeroes of some polynomial equations in some base ring R, eg., solutions
to

y2 − x3 − x2 = 0

in R look like

How can we represent these objects?

Classically, these objects were literally seen as their set of solutions:
this is called the variety associated to the polynomial equations.

However, this doesn’t keep track of multiplicity: eg., x = 0 and
x2 = 0 have the same set of solutions, so define the same variety.
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Category of Algebraic Geometry?

But multiplicity is important! For example, Bezout’s theorem, which
talks about the intersection of two equations, counts the intersections
with multiplicity, eg., y = x2 and y = 0 have an intersection of
multiplicity 2 (x2 = 0, not x = 0).

So it can be very useful to view x = 0 and x2 = 0 as separate
objects.

How to do this? The standard answer is to build the category of “affine
schemes” (over a ring R)

But this definition is fairly complicated (and unintuitive, at least to
me).

It involves prime ideals, the Zariski topology, locally ringed spaces...

But at the end of the day, the category that is built is equivalent to
(commutative R-algebras)op.
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Commutative R-algebras

So we’ll represent these objects directly as objects in (commutative
R-algebras)op. Recall:

Definition

For a commutative unital ring R, a commutative R-algebra is a
commutative unital ring A with an R-module structure which is
compatible with A’s ring structure.

Equivalently, an R-algebra consists of a commutative unital ring A
with a ring homomorphism R −→ A.

We’ll write cAlgR for the category of these objects.
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Varieties as objects of cAlg op
R

Given a set of polynomials, we view the associated variety as an object of
cAlgop

R by sending it to its co-ordinate ring

R[x1, x2, . . . xn]/(ideal generated by the polynomials)

For example, we represent y2 − x3 − x2 = 0 as the algebra

R[x , y ]/(y2 − x3 − x2)

or y − x2 = 0, yz = 0 as the algebra

R[x , y , z ]/(y − x2, yz)

But why should this be the right category to represent these objects?
Two answers:

1 Points

2 Subobjects more generally.
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Points of the co-ordinate ring of a variety

The (categorical) points of a co-ordinate ring are exactly the
solutions of its equations!

R is an initial object in cAlgR , hence a terminal object in cAlgop
R

So a (categorical) point of R[x , y ]/(y2 − x3 − x2) is a map

R −→ R[x , y ]/(y2 − x3 − x2) in cAlgop
R ,

so a map
R[x , y ]/(y2 − x3 − x2) −→ R in cAlgR .

But such a map is entirely determined by where it sends x and y ,
and it can send them to any points of R (say a and b) so along as
the associated map is well-defined, ie., b2 − a3 − a2 = 0.

So indeed the categorical points are precisely the points of the
associated variety.

I wish algebraic geometry books put this more up front! It’s usually
buried in an exercise somewhere...
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More examples of points

Some more examples of this idea:

Note that the categorical points of R[x1, x2, . . . xn] (viewed as an
object of cAlgop

R ) are the set of all n-tuples of elements of R.

Hence why R[x1, x2, . . . xn] is referred to as “affine n-space”.

Note that the points of

R[x ]/(x) and R[x ]/(x2)

are the same (both just x = 0). However, they are different objects
in this category: R[x ]/(x) is just R, while

R[x ]/(x2) = {a+ bx : a, b ∈ R, x2 = 0}.

Thus viewing the equation(s) as an object of cAlgop
R keeps the

information of its associated variety, but also contains much more.
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Subobjects

Another example of why cAlgop
R is the “right” category: monomorphisms.

As an example, there should be a natural inclusion of
y2 − x3 − x2 = 0 into affine 2-space

That is, there should be a natural monomorphism

R[x , y ]/(y2 − x3 − x2) ↪→ R[x , y ] in cAlgop
R ,

that is, a natural epimorphism

R[x , y ] ↠ R[x , y ]/(y2 − x3 − x2) in cAlgR .

But of course there is: the quotient map!

So quotients of algebras = inclusions of sub varieties/schemes.
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Recap

So, we’re thinking of varieties as objects of cAlgop
R (“affine schemes”) via

their co-ordinate ring, eg.,

that is, y2 − x3 − x2 = 0, is represented by the object in cAlgop
R

R[x , y ]/(y2 − x3 − x2)

Our main question is: what is the tangent bundle of such an object,
ie., of an affine scheme?
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Tangent bundle of an affine scheme

For an affine scheme A ∈ cAlgop
R , define

TA := Symmetric A-algebra of (Kahler differentials of A over R)3

which is much more complicated than TU = U × Rn! So we’ll go into it
in a bit more detail:

1 I’ll begin by introducing/reviewing both the Kahler differentials and
the symmetric algebra, and look at some examples.

2 Then see what the tangent category structure is.

3 Then we’ll look at the tangent spaces of examples.

3Grothendieck himself called this the “fibré tangent” (tangent bundle) of A in EGA
IV (16.5.12). However, this name doesn’t appear in textbooks much anymore...
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Kahler differentials

Definition

If A is a commutative R-algebra, the Kahler differentials of A (over
R), ΩR(A), is the free A-module generated by symbols da (for each
a ∈ A), subject to the relations

(d is R-linear): d(0) = 0, d(a+ b) = da+ db, d(ra) = rd(a),

(Leibniz rule(s)): d(1) = 0, d(ab) = adb + bda.

Example

If A = R[x ], then ΩR(A) is just the free A-module on one generator (dx),
since for example

d(x2) = d(x · x) = xdx + xdx = 2xdx

and more generally for any p(x) ∈ R[x ],

d [p(x)] = p′(x)dx
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More Kahler examples

Example

Similarly, if A = R[x1, x2, . . . xn], ΩR(A) is the free A-module on the
generators dx1, dx2, . . . dxn.

Kahlers work well with quotients of polynomial algebras: the Kahler of

R[x1, x2, . . . xn]/(p1, p2, . . . pk)

is the free A-module on the generators dx1, dx2, . . . dxn subject to the
derivatives of the pi ’s.

Example

If A = R[x , y ]/(y2 − x3 − x2), ΩR(A) is the free A-module on dx , dy ,
subject to the relation 2ydy − 3x2dx − 2xdx = 0.

Kahlers can also be completely trivial:

Example

ΩR(C) = 0.
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Symmetric algebra and tangent bundles

Definition

If M is an A-module, the symmetric algebra of M, Sym(M), is the free
A-algebra generated by M.

Putting these together gives the tangent bundle:

Example

The tangent bundle of A = R[x1, x2, . . . xn] is

TA = R[x1, x2, . . . xn, dx1, dx2, . . . dxn]

Example

The tangent bundle of A = R[x , y ]/(y2 − x3 − x2) is

TA = R[x , y , dx , dy ]/(y2 − x3 − x2, 2ydy − 3x2dx − 2xdx)

Example

The tangent bundle of C (over R) is T (C) = C.
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Tangent structure of affine schemes

What is the rest of the tangent structure?
(Action on arrows) For f : B −→ A in cAlgop

R , Tf : TB −→ TA is the
algebra map TA −→ TB defined by a 7→ f (a), da 7→ df (a).

(Projection) p : TA −→ A is the algebra map A −→ TA defined by
a 7→ a.
(Zero) 0 : A −→ TA is the algebra map TA −→ A defined by
a 7→ a, da 7→ 0.
(Addition) + : T2A −→ TA is the algebra map TA −→ TA⊗A TA
defined by

a 7→ a, da 7→ da⊗ 1 + 1⊗ da.

(Lift) ℓ : TA −→ T 2A is the algebra map T 2A −→ TA defined by

a 7→ a, da 7→ 0, d ′a 7→ 0, d ′da 7→ da

(T 2A is generated by symbols a, da, d ′a, d ′da)
(Flip) c : T 2A −→ T 2A is the algebra map T 2A −→ T 2A defined by

a 7→ a, da 7→ d ′a, d ′a 7→ da, d ′da 7→ d ′da.

Some well-defined checking is required here, but it does work out.
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Tangent spaces

But why should the tangent bundle of A = R[x , y ]/(y2 − x3 − x2) be

TA = R[x , y , dx , dy ]/(y2 − x3 − x2, 2ydy − 3x2dx − 2xdx)?

Let’s look at some tangent spaces to get a better idea of what’s going on.
In particular, let’s start with the tangent space of A at the point (−1, 0).

By definition, this is the pullback

T(−1,0)A //

��

TA

pA

��
R

(−1,0)
// A

in cAlgop
R .



Introduction Review of tangent categories Algebraic geometry done quickly Tangent structure of affine schemes Conclusion

Tangent spaces continued

So it is the pushout

A
pA //

(−1,0)

��

TA

��
R // T(−1,0)A

(where recall pA is the algebra map a 7→ a) in cAlgR , that is,

T(−1,0)A = R ⊗A TA

which is given by “evaluating”

TA = R[x , y , dx , dy ]/(y2 − x3 − x2, 2ydy − 3x2dx − 2xdx)

at the point (−1, 0), ie.,

T(−1,0)A ∼= R[dx , dy ]/(−3dx + 2dx) ∼= R[dx , dy ]/(−dx) ∼= R[dy ]

That is, 1-dimensional; completely free in the y -direction, as the picture
suggests.
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Singular example

What is the tangent space of A = R[x , y ]/(y2 − x3 − x2) at the point
(0, 0)?

Similarly, we evaluate

TA = R[x , y , dx , dy ]/(y2 − x3 − x2, 2ydy − 3x2dx − 2xdx)

at the point (0, 0)

This gives
T(0,0)A = R[dx , dy ]

ie., 2-dimensional, completely free in both dx and dy . The tangent
space here is different than all other tangent spaces!

Again, note the difference with smooth manifolds, where the tangent
spaces are all isomorphic.
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Even more singular example

For something even more extreme, consider

A = R[x , y ]/((x + y)2) = R[x , y ]/(x2 + 2xy + y2),

whose associated variety is just the line

But has tangent bundle

TA = R[x , y ]/((x + y)2, 2(x + y)(dx + dy)

whose tangent space at any point is 2-dimensional! Algebraic geometry
books draw this kind of object as a “(infinitesimally) thickened line”.
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Conclusions

What does the existence of this tangent structure tell us?

For tangent categories: they aren’t just about categories of
“smooth” objects; they are more flexible, and in some sense are just
about “tangents”, generally.

For algebraic geometry: the idea that (Symmetric algebra of Kahler
differentials) is a tangent bundle has additional theoretical support:
it satisfies the same abstract properties as the tangent bundle for
smooth manifolds (and generalizations of it).

And this leads to lots of further possibilities:

Many things you can do in a tangent category (eg., define
differential (vector) bundles, connections, etc.): what do they look
like in this example? That’s where we’ll pick up next time.

Has the potential to lead to all sorts of interesting generalizations in
non-commutative algebraic geometry as well (Marcello is working on
this)
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