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Abstract
Background: The covarion hypothesis of molecular evolution holds that selective pressures on a
given amino acid or nucleotide site are dependent on the identity of other sites in the molecule
that change throughout time, resulting in changes of evolutionary rates of sites along the branches
of a phylogenetic tree. At the sequence level, covarion-like evolution at a site manifests as
conservation of nucleotide or amino acid states among some homologs where the states are not
conserved in other homologs (or groups of homologs). Covarion-like evolution has been shown to
relate to changes in functions at sites in different clades, and, if ignored, can adversely affect the
accuracy of phylogenetic inference.

Results: PROCOV (protein covarion analysis) is a software tool that implements a number of
previously proposed covarion models of protein evolution for phylogenetic inference in a
maximum likelihood framework. Several algorithmic and implementation improvements in this tool
over previous versions make computationally expensive tree searches with covarion models more
efficient and analyses of large phylogenomic data sets tractable. PROCOV can be used to identify
covarion sites by comparing the site likelihoods under the covarion process to the corresponding
site likelihoods under a rates-across-sites (RAS) process. Those sites with the greatest log-
likelihood difference between a 'covarion' and an RAS process were found to be of functional or
structural significance in a dataset of bacterial and eukaryotic elongation factors.

Conclusion: Covarion models implemented in PROCOV may be especially useful for phylogenetic
estimation when ancient divergences between sequences have occurred and rates of evolution at
sites are likely to have changed over the tree. It can also be used to study lineage-specific functional
shifts in protein families that result in changes in the patterns of site variability among subtrees.

Background
The covarion hypothesis of molecular evolution proposes
that selective pressures on a given amino acid or nucle-
otide site are dependent on the identity of other sites in
the molecule that change throughout time, resulting in

changes of evolutionary rates of sites along the branches
of a phylogenetic tree [1]. At the sequence level, covarion-
like sites are often recognizable in alignment columns as
residues that are conserved among taxa in one clade but
variable among taxa in one or several other clades.
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Changes in rates at sites in different sequences are also
referred to as type-I functional divergence [2] or 'hetero-
tachy' [3]. Covarion-like evolution is now widely recog-
nized as an important mode of molecular evolution in
protein-coding genes, structural RNA, and DNA regula-
tory elements (e.g., [4-6]). This realization has fueled the
development of several kinds of phylogenetic models
including: (i) 'covarion models' that are designed to
model the stochastic changes of rates at sites in sequences
[7-12], (ii) discrete 'rate-shift' models where sudden
changes in rates at multiple sites occur at particular splits
in the tree [13], and (iii) mixture of branch lengths-based
heterotachy models [14-18]. Empirical studies have
shown that phylogenetic estimation under the covarion
models may recover different optimal topologies than
when estimation is performed ignoring covarion effects
[e.g., [10]]. Indeed, simulation studies have shown that
under some branch-length conditions, use of rates-across-
sites (RAS) models that ignore covarion effects may cause
long-branch repulsion biases in the resulting phylogenetic
estimates [19]. Other studies have focused on developing
computational methods to detect whether covarion-like
evolution occurs in protein families [20-22], identify cov-
arion or heterotachous sites to analyse functional shifts in
a protein family [2,13,23-28] and detect positive selection
in primate and viral genes [28-31].

Covarion models with changing rates of evolution at sites
in different parts of the tree build upon the simpler RAS
models that assume evolutionary rates are variable among
sites but constant across lineages in a gene or protein. RAS
is typically modeled by a 'discretized' approximation of
the gamma distribution with a series of equiprobable rate
classes [32]. The modeling of covarion processes is more
challenging. Typically, these models allow rates at a site to
vary gradually through the tree according to a stochastic
process. The gradual rate shift in a covarion context can be
formulated as a Markov model of rate switching between
different rate classes, usually eight or less.

Five specific covarion models have been proposed that
differ in the complexity of the rate switching processes [7-
12]. The simplest model, proposed by Tuffley and Steel
[7], assumes that rates along a branch in a phylogenetic
tree can have two states 'off' and 'on'; switching from 'off'
to 'on' occurs with one rate (s01) and from 'on' to 'off'
(s10) with another rate. When a site is 'off', no substitu-
tions occur and when it is 'on', substitutions occur at a
constant rate. Huelsenbeck [8] added additional rate
classes to this model. In the Huelsenbeck model, when
the site is 'on', the expected substitution rate per unit time
at the site is a specific rate drawn from the discrete gamma
distribution, whereas it is zero when it is 'off'. A third cov-
arion model was developed by Galtier [9], who assumed
that only a subset of sites (of fixed proportion, B) evolve

under the covarion process. The remaining sites have a
site-specific rate drawn from a discrete gamma distribu-
tion. For sites evolving under the covarion process, rates
are also drawn from a gamma distribution and the differ-
ent rate classes can switch freely between each other at a
single rate (s11). A more general model that combines
features of both the Tuffley-Steel/Huelsenbeck models
and the Galtier model was recently proposed [10], in
which a covarion site may not only switch between an 'on'
and 'off' state but also can switch between different rate
categories of 'on' states. This latter model allows a variety
of switching rates between the rate classes. More recently
Whelan proposed a further generalized model which
allows substitution rate-matrix changes as well as rate
switches along the tree branches [[11], see also [12]].

The first four covarion models are described in Wang et al.
(2007) [10] which were implemented in PROCOV for
maximum likelihood (ML) estimation of covarion param-
eters for a fixed phylogenetic tree and protein alignment
data. The new version of PROCOV described herein
allows ML-based tree estimation using the subtree-prun-
ing regrafting (SPR) algorithm, under a variety of amino
acid substitution models including JTT, WAG and LG [33-
35]. We have also utilized several numerical libraries in
PROCOV to improve the efficiency of the likelihood cal-
culations and thereby make computationally intensive
tree searching analyses more practical. Here we demon-
strate the utility of PROCOV in performing 'deep-level'
phylogenomic analyses where model misspecification can
often lead to long-branch attraction. We further explore
the use of PROCOV as a way to detect covarion sites in
protein families that have structural and functional signif-
icance.

Implementation
As in all common likelihood-based methods, PROCOV
implements a pruning algorithm [36] for the likelihood
calculation. In conventional Markov models of protein
evolution, there are 20 amino acid states and the substitu-
tion rates of the amino acids are described by an instanta-
neous substitution rate matrix (a Q matrix), such as the
JTT model. Under the covarion model, character states are
two dimensional, describing both the amino acid state
and the substitution rate at that state at any given time.
The Q matrix in a covarion model is thus a large sparse
matrix. In PROCOV we used an algorithm introduced in
[37] to decompose the Q matrix into a sum of two Kro-
necker products, each consisting of two smaller matrices.
Even with this efficient algorithm, the calculation of the
likelihood of the data for a given tree with the general cov-
arion model is about 10 to 20 fold slower than for an RAS
model with the same number of rate categories. This is
because likelihood calculations under the general cov-
arion model have a much larger number of terms to be
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summed over at each ancestral node as compared to an
RAS model. For instance, under the general covarion
model with 4 rates, there is a 16-fold increase in the
number of terms to be summed relative to that under the
RAS model.

For a given topology, ML estimates of parameters are
obtained by a modified Newton-Raphson algorithm
which requires the calculation of derivatives of the likeli-
hood function with respect to each adjustable parameter.
As analytical derivatives are difficult to compute for the
covarion parameters, numerical derivatives are computed
for all three covarion switching parameters. The derivative
for the proportion of covarion sites parameter π in the
general and Galtier models is computed analytically as the
difference of the covarion likelihood and RAS likelihood
across the sites. For the tree searching function, we used
the SPR algorithm implemented in NHML [38]. An initial
tree is modified by pruning subtrees and moving them to
other places. If a rearrangement results in an increase of
the likelihood, that tree is kept as a starting tree. The algo-
rithm iterates until no rearrangement increases the likeli-
hood.

PROCOV is written in ANSI C, and is based on the phylo-
genetic inference package NHML [9,38]. The current ver-
sion of PROCOV needs a user-supplied starting tree which
should be rooted; the "retree" program of PHYLIP [39]
can be used for re-rooting. The starting tree can, for
instance, be a neighbor-joining tree or a parsimony tree
available from most phylogenetic packages. Compared
with NHML, PROCOV has numerous new features,
including, for instance, a command-line argument for set-
ting models, parameters, input and output data; imple-
menting protein models and four covarion models
(NHML only implements the Galtier model for DNA
data); new functions for matrix decomposition, matrix
operations and computing derivatives. We have also
introduced the following algorithms to speed up the tree
searching procedure. Since the optimization of the
gamma shape parameter (α) and the covarion parameters
takes time, during the tree searching stage, we re-optimize
these parameters only when a tree with a higher likeli-
hood than the previous best tree is found. In this way,
these parameters drift to the optimal values as the search
proceeds. Furthermore, we relax the convergence condi-
tion to optimize parameters during the tree search stage;
parameter optimization stops when the log-likelihood
difference between two consecutive iterations is less than
0.1. For optimizing the final optimal tree, we impose a
much stricter constraint (log-likelihood difference =
0.0001). Although the likelihood gain from a stricter con-
vergence threshold is usually small (less than 1), accord-
ing to our simulation results, this threshold yields
parameter values much closer to their true values.

Some of the NHML routines are particularly useful for sav-
ing tree searching time and so have been inherited by
PROCOV. For example, if a starting tree in the Newick for-
mat contains high bootstrap values that are greater than
the maximum bootstrap value allowed for branch move
during the SPR searches (defined by the variable
SH_MAXBOOTCROSSED in the option files of the PRO-
COV source code package), those branches will not move
separately in the SPR stage. Similarly it also has a function
to forbid moving those branches that are longer than a
user-defined value (defined by the variable
SH_MAXLCROSSED in the option files). This branch
movement restriction, resulting in partial SPR searches,
gives user the flexibility in choosing which internal nodes
are fixed and therefore can greatly reduce tree search time
if many nodes are fixed. An extreme form of this branch
movement restriction is to restrict PROCOV to compare
only a few competing topologies, as in our previously
published analyses of Angiosperm phylogeny (see [10]).
Furthermore, PROCOV inherits from NHML a 'restart'
function that can save all of the currently evaluated trees
so that it will automatically bypass those topologies if the
program has to be started over again. These functions are
of practical importance as ML estimation under the gen-
eral covarion model will usually take several days for a
moderate-sized dataset (e.g., 30 taxa 400 sites).

For compilation of the source code, we recommend the
use of GCC or compatible compilers. Use of the -O3 and
-funroll-loops for compiler optimization also signifi-
cantly increases its running speed; for a small dataset we
tested, this speedup can be more than two fold. PROCOV
spends a lot of time doing matrix operations, such as
matrix multiplication, matrix inversion and eigenvalue/
eigenvector decomposition. To do these kinds of calcula-
tions, phylogenetic programs including NHML com-
monly use C routines based on those described in
Numerical Recipes [40]. To improve speed, the current ver-
sion of PROCOV makes use of the high quality routines in
Basic Linear Algebra Subprograms (BLAS; http://
www.netlib.org/blas) implemented in Automatically
Tuned Linear Algebra Software (ATLAS; http://math-
atlas.sourceforge.net) to perform basic vector and matrix
operations. This has been found to increase the speed of
PROCOV by at least three fold (see results below). Recom-
mendations for utilizing the BLAS libraries other than
through the free ATLAS (e.g., through the commercial Sun
Performance Library or Intel® Math Kernel Library) are
included in the Makefile.

Results
Comparing the speedup of PROCOV with the new BLAS 
implementation
To compare the speedup of PROCOV with the BLAS
implementation versus the non-BLAS implementation,
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we tested two protein datasets (Acetyl-CoA carboxylase
with 36 taxa and 212 sites and Heat shock protein 70
(HSP70) with 34 taxa and 432 sites) for fixed topologies,
previously inferred with PHYML [41] under JTT +
Gamma, and optimized the parameters with JTT + the
general covarion model with PROCOV. For Acetyl-CoA
carboxylase, with the BLAS implementation, it took 22
minutes to finish parameter optimization and obtain the
final log-likelihood score whereas the non-BLAS version
took 1 hour 42 minutes for the same analysis. For the
HSP70 data set with a fixed tree, the BLAS and non-BLAS
versions took 49 minutes and 2 hours 28 minutes, respec-
tively. The final likelihood scores yielded by the BLAS and
non-BLAS versions of PROCOV are the same in both
cases.

To assess the performance for PROCOV on tree searching,
we simulated five datasets of 250 sites with seq-gen-ami-
nocov [19] based on a tree topology obtained from a 17-
taxon 60 KDa chaperonin (CPN60) dataset [10]. The ref-
erence tree and simulated datasets are available on the
PROCOV web site. The simulations employed the JTT
model and the RAS, Tuffley-Steel (TS), Galtier, Huelsen-
beck and general covarion models, respectively. For the
models with an RAS-process (all but the TS model), four
gamma rates were used in simulation. We then used PRO-
COV to estimate the topology for each dataset under the
corresponding model (i.e, using the same model that was
used for simulating the data for each dataset) and (except
for the TS model) 4 gamma rates, with a starting tree that
was obtained with the neighbor-joining method by
PHYLIP for each dataset. PROCOV successfully recovered
the same true topology in each case. The speedups in
PROCOV with the BLAS versus non-BLAS implementa-
tions are 1.6, 3.2, 3.4 and 3.8 fold for the four covarion
models, respectively. There is no speedup for the RAS
model, as the BLAS libraries are not implemented for cal-
culations under the RAS model. The above comparative
results with and without the use of the BLAS libraries were
conducted on a computer with a 2.93 GHz Intel quad core
Xeon processor with 15.69 GB RAM. Similar speedups
were also observed on a computer with a different CPU
architecture (2 GHz AMD Opteron processor with 2 GB
RAM).

Table 1 shows for each simulated dataset the parameter
estimates from tree search with the BLAS version of PRO-
COV. It appears that α was very well estimated in all mod-
els; π was also estimated well; covarion switching
parameters were estimated fairly well in the simpler mod-
els (TS, Galtier and Huelsenbeck); they are less accurate in
the general model, especially s11. Nevertheless, the rank
order of the parameters used in the simulation, i.e.,
s01<s10<s11, is preserved in the estimates. This is consist-
ent with larger variances previously observed in estimates

of these parameters under the general covarion model
[10]. Table 1 also lists the maximum likelihood of each
dataset, the number of SPR trees searched and the CPU
times used. The TS and RAS models spent the least time
and the other three models spent about the same amount
of time. The fact that the general model spent even less
time than the Galtier model indicates that the running
time is not only determined by the complexity (the
number of free parameters) of the model but also how fast
the program converges during each round of SPR search.

As the general covarion model takes much more time than
the simpler covarion (e.g., TS) and RAS models in infer-
ring a phylogeny, we asked whether the simpler models
can correctly reconstruct phylogenies for data simulated
under the general model. This is of practical importance as
if it is true then the simpler models would prefer to be
used to reconstruct the phylogenies to save computational
time. For the CPN60 dataset simulated under the general
model, we used each of the simpler models (RAS, TS, Gal-
tier and Huelsenbeck) to estimate the phylogenies. Each
of the models were able to correctly infer the same correct
topology as using the general model but the running
times were very different. The RAS and TS models took 16
and 4 minutes, respectively; both the Galtier and Huelsen-
beck models took more than 5 hours. Despite the same
topology inferred, branch length estimates were different
from those that estimated under the general model, which
were the true model that were used for simulation. Figure
1 shows the true tree length used for simulation and esti-
mates under the RAS, TS, Galtier, Huelsenbeck and gen-
eral models. The tree lengths were separated as the sum of
the external branch lengths and the sum of the internal
branch lengths. All simpler models, especially RAS, under-
estimated the branch lengths. Therefore, the general
model may not be replaced by simpler models for certain
types of data.

Previously we showed that the general model can con-
verge to the Huelsenbeck and Galtier models when data-
sets are simulated under these models [10]. Here we
further show that the general model can even adapt to the
RAS model when the data are simulated under RAS. For
the CPN60 dataset simulated under the JTT + RAS model,
the general model recovered the same correct topology as
the RAS model. Moreover, the branch length estimates
under the general model are very close to that under the
RAS model (the differences in the sums of the internal and
external branch lengths are 0.01 and 0.03, respectively)
for the total true tree length of 3.92. It turns out that the
general model was able to adjust the covarion parameters
(the covarion proportion π = 0.03, s01 = 0.03, s10 = 0 and
s11 = 50, indicating no covarion for this data) to converge
to the RAS model. Therefore, both the topology and the
branch lengths were correctly inferred. For the same RAS-
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simulated dataset we also found that the Huelsenbeck
model was able to correctly estimate both the topology
and branch lengths by adjusting parameters to mimic
RAS-like process (s01 = 100, s10 = 0).

Establishing the phylogenetic position of Microsporidia
With the speedups of PROCOV made possible by the use
of the BLAS libraries and other algorithmic improve-
ments, it is now possible to compare topologies and, in
some cases perform tree searches, for larger phylogenomic
datasets (i.e. data sets made up of super-matrices of pro-
teins) under covarion models in a reasonable time. Deep
phylogenetic analyses of the eukaryote tree are often
plagued with long-branch attraction (LBA) artifacts, even
when large multi-gene phylogenomic data sets are used
[42,43]. One of the most famous examples of this con-
cerns the position of Microsporidia, a group of fast-evolv-
ing intracellular parasites that are now known to be
relatives of Fungi. When reconstructing the phylogeny of
eukaryotes rooted by Archaea, if the estimation is per-
formed with ML under an RAS model, the extremely long
branch leading to Microsporidia is usually attracted to the

long branches leading to the Archaea at the base of the
eukaryotes regardless of what amino acid substitution
models are used. Many methods have been proposed to
solve this problem, including selective taxon sampling,
removal of fast-evolving proteins and saturated sites [42-
44], accounting for covarion shifts [44], amino acid pro-
file mixture modeling [45], branch length mixture mode-
ling [17] and rare genomic changes of conserved amino
acids-multiple substitutions [46]. Here we applied the
general covarion model + WAG to a large eukaryote phyl-
ogenomic data set made up of 133 proteins from 40 taxa
and 24294 sites [42] and calculated the log likelihoods of
two competing trees: the LBA topology where Micro-
sporidia groups with Archaea and, the correct topology
where Microsporidia groups with Fungi. The general cov-
arion model clearly supports the correct Microsporidia +
Fungi tree with a large log-likelihood gain (4416.87) com-
pared to the LBA tree (Table 2). In contrast, the correct tree
has a smaller log-likelihood than the LBA tree under the
RAS + WAG model (the log-likelihood difference between
the right and the wrong trees is -197.5). Thus, for a real
example, the covarion model appears to be less suscepti-

Table 1: Estimated parameters under SPR-based full tree search for datasets of 250 amino acid sites simulated based on a 17-taxa 
chaperonin tree with JTT + the listed models.

Model Parameter ln likelihood # SPR CPU time

Used in simulation PROCOV estimation trees searched

RAS α 0.50 0.50 -4245.78 698 17 min

Tuffley-Steel s01 1.875 1.66 -4752.23 648 14 min

s10 1.25 0.80

Galtier α 0.5 0.41 -4188.25 673 6 hr 52 min

s11 1.5 2.29

π 0.6 0.57

Huelsenbeck α 0.5 0.46 -4070.79 648 6 hr 8 min

s01 1.875 1.89

s10 1.25 0.83

General α 0.5 0.50 -4156.24 672 6 hr 26 min

s01 1.5 1.00

s10 2 1.35

s11 2.5 5.35

π 0.6 0.62
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ble to the effects of LBA than the RAS model. We recently
also used a site-specific class frequency mixture model
implemented in QmmRAxML [47] to analyze the data
and found the mixture model supported the correct topol-
ogy, albeit with a smaller log likelihood gain (Table 2).
Therefore, in this particular case, the LBA problem can be
overcome with more realistic phylogenetic models that
either account for site-specific substitution dynamics or
covarion-like evolution.

Detecting covarion sites of functional and structural 
significance
Covarion models are useful not only because of improved
phylogenetic estimation; they can also be used to identify
patterns of sequence evolution that explain divergence in
protein function or structure. Previous computational
work on elongation factors (EF) has nicely demonstrated
that identifying evolutionary site-rate shifts coupled with
analyses of three-dimensional structures of the protein
family can pinpoint sites that are likely important in func-
tional divergence and structural change between bacterial

elongation factor Tu (EF-Tu) and eukaryotic elongation
factor 1α (EF-1α) [24]. In fact a number of additional
methods have been developed over the last decade to
identify rate-shifted sites for the same purpose [2,23,25-
28,48]. Most of these methods rely upon assuming that a
discrete shift in rates at many sites has occurred over one
branch in the protein phylogeny under examination and
estimation of the phylogeny is usually performed before-
hand using standard phylogenetic models.

Since PROCOV specifically models changing rates at sites
during tree estimation, it may also be used to detect such
rate shifts and has the added advantage that these rate
shifts need not occur only on a single split in the phylog-
eny. To illustrate its utility, we reanalyzed the bacterial
and eukaryotic EF data (30 taxa and 380 sites) described
in Gaucher et al. [24]. We first inferred ML phylogenetic
trees for this data using PROCOV under WAG + RAS and
WAG + the general covarion model, respectively. We also
used QmmRAxML [46] with the WAG + RAS model to
obtain an ML tree. All the three methods estimated the
same tree (Figure 2), (which is slightly different from the
tree reported in [24]). The log-likelihood difference for
this tree under the general covarion model versus the RAS
model is 157.27 (p-value < 0.01 by a likelihood ratio test
with 4 degrees of freedom), confirming that the EF data
shows covarion-like properties [23,24]. The parameters
estimated under the general covarion model are α =
1.1089; s01 = 0.4473; s10 = 0.2723; s11 = 0.2519 and π =
0.9652. As described in Wang et al. (2007) [10], under
this model site likelihoods are computed separately for
both the covarion model (l_cov) and the RAS model
(l_ras) and then combined to get a total weighted likeli-
hood of the site (π × l_cov + (1-B) × l_ras). In order to
determine which sites show a strong 'covarion' pattern,
the difference in log-likelihoods between the two models
at a site can be calculated as Λ = ln(l_cov) - ln(l_ras); cov-
arion sites are expected to have a Λ >> 0 as compared to
sites that do not change rates across the tree.

The -L option of PROCOV's command line arguments
allows user to extract ln(l_cov) and ln(l_ras) for each site.
We used this option to get the site likelihoods for the EF

The true tree length of a 17-taxa CPN60 tree used for simu-lating the datasets and the estimates under the different modelsFigure 1
The true tree length of a 17-taxa CPN60 tree used 
for simulating the datasets and the estimates under 
the different models. The tree lengths (the Y axis) are 
shown as the sum of the external branches (External) and 
the sum of the internal branches (Internal) and the total tree 
length (Total) separately. The data was simulated under JTT 
+ the general covarion model and estimated under the other 
models.
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Table 2: Log-likelihoods of the two competing trees of the Microsporidia data [42] calculated with PROCOV under the general 
covarion model (GCM) and the RAS model, respectively, and with QmmRAxML under the class frequency mixture model (cF) [47].

Tree PROCOV QmmRAxML

GCM+WAG RAS+WAG cF+RAS+WAG

Microsporidia-fungi-clade -737,304.13 -742,093.43 -731,758.97

Microsporidia-archaea-clan -741,721.00 -741,895.93 -731,780.03

Log likelihood difference between the two trees 4416.87 -197.50 21.06
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data under the general covarion model and calculated Λ
for each site. Two hundred and forty out of the 380 sites
have a positive Λ (i.e. ln(l_cov) > ln(l_ras)) while the
remaining 140 sites have a negative Λ. Figure 3 shows a
histogram of the distribution of Λ with a mean of 0.45
and standard deviation (SD) of 1.3. Twenty one sites have
a Λ > mean + 2 SD and 42 sites have a Λ > mean + 1 SD.
However, use of this distribution to identify covarion sites
is not straightforward since the long right tail of the distri-
bution (Figure 3) is likely due to the presence of many
covarion sites. Thus the SD of this distribution is expected
to be inflated relative to the SD of Λ distribution for non-
covarion sites.

In order to get a valid cutoff value for Λ that indicates a
significant likelihood difference between the two models
at the site (i.e., identify if the site is a covarion site), we
used seq-gen-aminocov [19] to simulate 10,000 sites

based on the EF tree (Figure 2) under the WAG + RAS
model with 4 gamma rates and α = 0.8436, which is the
fitted α for the original EF data estimated with the RAS
model. We then used the general covarion model to calcu-
late the covarion and RAS site likelihoods by fixing the
topology and allowing all the parameters to be optimized.
We calculated Λ for each of the 10,000 sites of the simu-
lated EF data. Figure 4 shows the frequency distribution of
Λ for the simulated data. The 99th percentile of the Λ dis-
tribution is 1.652, and can be used as a threshold for sta-
tistical significance. Note however this threshold value of
1.652 is model (tree and parameter) specific and therefore
is only valid for the current original EF data. Using this cri-
terion, 43 sites in the original EF dataset have a Λ greater
than 1.652 which can be considered covarion sites with
confidence at P < 0.01. As the dataset has 380 positions,
one can expect about 4 (380 × 0.01) sites could be cov-
arion sites (i.e. fall above the threshold value) by chance

A phylogenetic tree of the bacterial EF-Tu and eukaryotic EF-1α inferred with PROCOV under WAG + the general covarion modelFigure 2
A phylogenetic tree of the bacterial EF-Tu and eukaryotic EF-1α inferred with PROCOV under WAG + the 
general covarion model. Brackets refer to the amino acids of the two groups at position 256, a site illustrating a non-typical 
covarion pattern where both eukaryotic (EF-1α) and bacterial (EF-Tu) sequences are very variable. Changes in EF-1α are more 
radical (i.e. substitutions between amino acid with different physicochemical properties) whereas those in EF-Tu are structur-
ally more conserved changes.

Bacteria 

Eukaryotes
Page 7 of 13
(page number not for citation purposes)



BMC Evolutionary Biology 2009, 9:225 http://www.biomedcentral.com/1471-2148/9/225
alone. This indicates there are many more sites with signif-
icant log likelihood differences than expected in the orig-
inal EF dataset.

The 43 covarion sites PROCOV identified constitute
11.3% of the total sites in the EF alignment. This estimate
is consistent with some suggestions that about 10% of the
sites in this data set are covarion sites [24]. However, the
EF dataset used here is a relatively small one with 17 EF-

1α and 13 EF-Tu sequences. Inclusion of more taxa would
be expected to increase the proportion of covarion sites
detected [23,27,49]. In any case, Table 3 shows a list of the
43 identified positions in descending order of Λ. The
sequence alignment columns corresponding to these sites
are shown in Figure 5. Twenty four of the sites (marked as
'c' in the 'Covarion site' column in Table 3) are the sites
that were previously identified to be covarion sites of
functional/structural significance by Gaucher et al. [24].
Each of these displays a typical 'covarion-like' site pattern,
i.e., a lot of different amino acid states occur in the bacte-
rial group but no or little change occurs at that site in the
eukaryotic group or vice versa. Eighteen sites (marked as
'c1') were detected as covarion sites by PROCOV also
demonstrate this typical covarion pattern but were not
flagged by Gaucher and colleagues' method. As an inde-
pendent test, we also used our rate-shift detection pro-
gram Bivar [13] to estimate rate differences between the
two subgroups of EF-Tu and EF-1α, which recovered 34
sites as rate shifted with a p-value < 0.05. Thirty one of
these are the same covarion sites as picked up by PROCOV
(Table 3). Eleven sites (32, 37, 39, 67, 96, 106, 160, 178,
271, 350 and 356) identified by PROCOV as covarion
sites clearly show a typical covarion pattern, but these sites
were not picked up by Bivar (p-value > 0.05 in Table 3).
These comparisons indicate PROCOV may have more
power to identify covarion sites than either Bivar or the
Gaucher et al. method.

Site 256 in Table 3 is particularly interesting, as it ranks
relatively high (17th) among the log-likelihood differ-
ences between a covarion process and the RAS process yet
has a non-significant Bivar p-value of 0.12. The method
used by Gaucher and colleagues also did not pick up this
site as a covarion site. Inspection of the residues at this site
(Figure 5), reveals that it does not have a typical 'covarion
pattern' as the site is variable in both bacterial and eukary-
otic EFs. The EF-1α subgroup is slightly more variable at
this site, displaying 10 different amino acids that collec-
tively can be binned into 4 of the six different "Dayhoff"
groups of amino acids (I, L, M, V; E, Q; R; G, S, T) as com-
pared to the EF-Tu subgroup, which has 6 different amino
acids from 3 of the Dayhoff groups (I, L, M; E, Q; R)
[50,51]. Figure 2 shows the amino acids at site 256
mapped on to the EF-Tu/1α tree. Close inspection of the
substitutions at this site in the EF-1α subtree reveals that a
number of radical amino acid changes occur between rel-
atively closely related sister taxa in the tree (e.g. Drosophila
has an M, versus S in Artemia and Podospora has a V where
Trichoderma has a Q). Such radical changes are not
observed in similarly closely related bacteria in the EF-Tu
subtree. A subsequent analysis of the two subgroups sep-
arately with the general covarion model indicates the
eukaryotic EF1α has a very big positive difference between
ln(l_cov) and ln(l_ras) at site 256 (ΛEF-1α = 6.35) which

The distribution of the difference between covarion log-like-lihood and RAS log-likelihood at sites for the EF data ana-lysed with the general covarion modelFigure 3
The distribution of the difference between covarion 
log-likelihood and RAS log-likelihood at sites for the 
EF data analysed with the general covarion model.

0

10

20

30

40

50

60

70

80

90

100

-1.5 -1 -0.5 0 0.5 1 1.5 2.5 3.5 4.5 5.5 6.5 7.5

Lambda: ln(l_cov) - ln(l_ras)

N
u

m
b

er
 o

f 
si

te
s

A frequency density distribution of Λ, the difference between covarion log-likelihood and RAS log-likelihood at sites, esti-mated under the general covarion model for a dataset (10,000 sites) simulated under the RAS model based on the EF tree (shown in Figure 1)Figure 4
A frequency density distribution of Λ, the difference 
between covarion log-likelihood and RAS log-likeli-
hood at sites, estimated under the general covarion 
model for a dataset (10,000 sites) simulated under 
the RAS model based on the EF tree (shown in Fig-
ure 1).
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suggests it could be a covarion site for the eukaryotic sub-
set. By contrast, ΛEF-Tu = 1.55 for the bacterial subset and is
unlikely a covarion site, although a simulation study is
needed to determine a Λ threshold for the two subtrees
separately.

Despite the strong support for site 256 being a covarion
site in EF-1α, the residues at the site do not present a typ-
ical covarion pattern where variability is differentially

restricted in different groups. One possible explanation of
these observations is that the covarion model is compen-
sating for the radical substitutions between closely related
taxa observed in the EF-1α subtree, which are not consist-
ent with the WAG substitution model. A rate-switching
process could accommodate such radical substitutions by
in effect 'lengthening' the branches between closely
related taxa. This is in contrast to an RAS model where the
rates of evolution must remain constant across the tree

Table 3: Forty three sequence positions in the EF data show the highest differences between covarion site likelihood and RAS site 
likelihood.

Position* Lambda** Covarion site*** Bivar P-value****

1 34 7.280 c <0.001
2 36 6.503 c <0.001
3 325 6.246 c <0.001
4 305 5.652 c <0.001
5 138 5.458 c <0.001
6 336 4.873 c <0.001
7 329 4.790 c <0.001
8 153 4.702 c <0.001
9 327 4.632 c 0.014

10 35 4.595 c 0.022
11 123 4.438 c 0.004
12 311 4.199 c 0.003
13 189 4.034 c 0.007
14 103 3.906 c 0.001
15 69 3.726 c 0.004
16 131 3.430 c 0.002
17 256 3.256 c2 0.122
18 351 3.202 c 0.027
19 38 3.120 c1 0.043
20 51 3.073 c1 0.013
21 42 3.057 c1 0.029
22 106 2.896 c1 0.064
23 67 2.866 c 0.120
24 271 2.793 c1 0.064
25 133 2.789 c 0.045
26 144 2.700 c1 0.002
27 163 2.604 c 0.006
28 263 2.588 c 0.033
29 31 2.557 c1 0.012
30 39 2.442 c1 0.065
31 160 2.274 c 0.073
32 64 2.23 c1 0.038
33 32 2.143 c 0.147
34 82 2.116 c1 0.029
35 96 2.092 c1 0.080
36 326 2.060 c 0.021
37 178 2.047 c1 0.341
38 37 1.935 c1 0.081
39 40 1.921 c1 0.023
40 350 1.875 c1 0.071
41 355 1.818 c1 0.039
42 288 1.755656 c1 0.043
43 356 1.694422 c1 0.111

* Sequence position is based on the EF alignment [24]. **Λ = ln(lcov) - ln(lras). ***c: sites were found to be covarion sites of functional or structural 
significance in [24]; c1: sites having typical covarion site pattern but missed in [24]; c2: site showing non-typical covarion site pattern. ****P-values 
from a Bivar analysis of the EF data.
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even if radical substitutions are observed in some closely-
related taxa but not in others. To test the idea that the cov-
arion model was compensating for this kind of substitu-
tion model misspecification at site 256, we compared the
likelihood of this site under a simple proportional (Prop
+ RAS) model (where substitution rates are proportional
only to the target amino acid frequencies in the data set)
relative to the site likelihood under the WAG + RAS
model. As expected, for EF-1α site 256, the ln(l_prop+ras)
= -54.83 which is greater than ln(l_wag+ras) = -56.34,
despite the fact that over all sites the WAG + RAS model
has a greater log-likelihood (-12.51 per site) than the Prop
+ RAS model (-13.63 per site) for this subgroup. This
result suggests that it is the low exchangeability rates in
the WAG model corresponding to the radical amino acid
changes observed at this site that lead to the poor model
fit. Although unexpected, it seems that the covarion
model compensates for this kind of model misspecifica-
tion at sites that do not show classical covarion-type vari-
ability patterns.

In any case, although the 43 covarion sites listed in Table
3 are scattered throughout the 380 sequence positions in

the alignment, they are not randomly distributed. For
instance, there is a long sequence segment (sites 31 - 42)
that, with the exception of sites 33 and 41, are all covari-
ons. This segment maps to a surface loop region of the EF-
Tu structure (Figure 6), that is a possible ribosome bind-
ing site in bacteria [24]. The pattern at these sites indicates
that the bacterial EF-Tu sequences are typically variable
whereas the eukaryotic EF-1α sequences are conserved,
hinting a possible additional function for this loop in
eukaryotes that is absent in bacteria.

Discussion
We have developed PROCOV, an ML-based phylogenetic
program for modeling the covarion processes of protein
evolution. We showed that compiler optimization, espe-
cially the use of highly optimized math libraries, such as
BLAS, can significantly speed up likelihood calculation.
Although BLAS and related math libraries have been
widely used in high performance computing software

Forty three sites that were detected by PROCOV as the covarion sites in the EF dataset (the upper part of the align-ment is the bacterial EF-Tu and the lower part is the eukary-otic EF1α)Figure 5
Forty three sites that were detected by PROCOV as 
the covarion sites in the EF dataset (the upper part 
of the alignment is the bacterial EF-Tu and the lower 
part is the eukaryotic EF1α). The positions are 31, 32, 34 
- 40, 42, 51, 64, 67, 69, 82, 96, 103, 106, 123, 131, 133, 138, 
144, 153, 160, 163, 178, 189, 256, 263, 271, 288, 305, 311, 
325 - 327, 329, 336, 350, 351 and 355, 356. Site 256 is shown 
in red.

A.nidulans   KAMAKARAYDAENHVIDMNEMEESPADILLTHRPTGASMINIE 
B.fragilis   KKLSELRSFSEENHVIDMKCMEEFPQDIELNHRNTGETMIYLN 
B.subtilis   KKGKGAMAYQEETHVIDMYCMEEEPKAIEAEHRSTGIHMISIE 
C.vibriofo   KSKAAAREFDEQKHIIDMAVMEEEPKKIQLEHRNTGSTMIAME 
D.sp         ASPTIKLAYQANTHVIDMYVMEEKPKDIMVDHRGTGVEMIKME 
E.coli       KTGGAARAFQADTHVIDMYCMEEQPRAIRVEHRKTGTEMIHMD 
F.sinusara   LKYADYIEFNEEKHVIDMSCMEETPKKIEVDHRSTGVTMIQME 
M.leprae     DKPNLSRAFQQQKHIIDMYSAEEAPREIQLEHRNTGVTMIQMD 
S.typhimur   KTGGAARAFQADTHVIDMYCMEEQPRAIRVEHRKTGTEMIHMD 
S.platensi   ASGAKARKYDQEQHVIDMSAMEESPSDIMLNHRKTGTDMICIE 
T.maritima   LKLAQYIPYQAEKHIIDMYTMEEQPRKIICDHRKTGIGMIYIE 
T.aquaticu   AEPNVVKDYDAEKHIIDMYVMEEQPRDIILEHRTTGVRMIKLE 
S.aureofac   DKPDLASAFQQQAHIIDMYAMEEEPQDIQLEHRNTGVTMIQME 

D.melanoga   EKEKEFKYAVEEKYIVTNQMSAKKAPKLMFKRADKEKDASKVE 
H.sapiens    EKEKEFKYAVEEKYIVVNQMSKVKAPKLLFKMSDKEKDFGKVE 
A.thaliana   EREKEFKYAVEEKYIVTDQMAAIKPPKNLFKKGDLTKDFTKVE 
A.salina     EKEKEFKYAVEEKYIVVNQMSAKKAPKLSFKRSDKEKDFSKVE 
D.discolde   EKEKEFKYAVEEKYIVTNQMEAVKAPKVRFKQHDVDKDVSRVE 
E.gracilis   EKEKEFKYAVEEKVIVTDQFDAKKPPKEVFKKGDQTKDFQKVE 
P.falcipar   EKEKEFKYAVEERFILVEQMTDKKDPKQRFKKKDDSKDAKKVE 
P.anserina   EKEKEFKYAVEEKYIITDQMTAIKAPKEVFKMGDLQKDFSKVE 
P.graminis   EKEKEFKYAVEEKYIITDQMTQVKAPKEMFKKGDQQKDFSKVE 
S.lemnae     EKEKEFKYAVEEKVIIQEQMDGKKPPTDEFKKQDESKDFQKVE 
T.reesei     EKEKEFKYAVEEKYIITDQMTAIKAPKEQFKMGDLEKDFSKVE 
T.brucei     EKEKEFKYAVEEKVIIQDQMDEVKRPKETFKKGDESKDSQKVE 
T.aestivum   EREKEFKYAVEEKYIVTDQMAAVKPPKNLFKKGDVTKDFTKVE 
S.cerevisi   EKEKEFKYAVEEKQIIVDQMSSVKPPKEVFKKSDLEKDFSKVE 
T.pyriform   EKEKEFKYAVEEKHIIQDQMEEKKPPKEVFKKQDHDKDFTKVE 
P.purpurea   EKEKEFKYAVEEKNIIPNQMDESKPPKDGFKKHDILKDMSKVE 
E.histolyt   EKEKEFKYAVEEKYIITNQMAEKKPPKTIFKVRDLSKDYTKVE 

Tertiary structure of E. coli EF-Tu (PDB ID: 1EFC) [57], which has two identical polymer chains (A and B)Figure 6
Tertiary structure of E. coli EF-Tu (PDB ID: 1EFC) 
[57], which has two identical polymer chains (A and 
B). The covarion residues are mapped on the A chain (the 
top polymer). The red arrow points to the purple strip of a 
loop region of 10 nearly consecutive covarion sites (sites 37, 
38, 40 - 46, 48 in 1EFC), which corresponds to sites 31, 32, 
34 - 40, 42 on the EF alignment listed in Figure 5. The loop 
region is connected to the two helices, one at either end.
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(e.g. Matlab and R), we are not aware of other phyloge-
netic software that utilize these efficient libraries. The use
of the optimized math library together with some features
of PROCOV described above makes it tractable to do full
tree search under the general covarion model for datasets
of moderate size in a reasonable time (Table 1). For large
datasets one can selectively restrict the movements of
those branches and nodes that deem to be in the same
group when running PROCOV. This partial search will
considerably reduce tree search time when many nodes
and branches are fixed. For even larger phylogenomic data
one can use PROCOV to analyse several competing trees
that were already established by other phylogenetic meth-
ods and see which of them is preferred by the general
model. We applied this method to the Microsporidia phy-
logenomic dataset [42] and the general model clearly sup-
ports the correct Microsporidia-fungi clade tree over the
LBA-induced Microsporidia-anchaea clan tree. However,
this may not guarantee it is the optimal tree for the general
model if a tree search is conducted. For example, a partial
tree search of this Microsporidia data estimated a tree of
Microsporidia-protist clade that had a higher likelihood
than the tree of Microsporidia-fungi clade.

Examples in this study show that phylogenetic tree esti-
mation under a covarion model may or may not estimate
a different optimal topology than that under a non-cov-
arion RAS model. For the simulated CPN60 datasets as
well as the EF dataset, the RAS and covarion models esti-
mated the same optimal topologies; for the Microsporidia
data they differ. Our previous simulations and analytical
studies explored topology and branch length conditions
that the RAS and covarion models will likely estimate dif-
ferent topologies [19]. Results in Figure 1 show that even
though the RAS model was able to estimate the correct
topology for data simulated under the general model, it
would underestimate the branch lengths. Both the general
and Huelsenbeck models, however, will correctly infer the
topology and accurately estimate branch lengths for the
data simulated under the RAS model. They do so by
adjusting the covarion parameters to converge to the RAS
model. For real data, we do not know in advance whether
the data follow covarion or RAS evolutions or both. The
general model, including the RAS and TS, Huelsenbeck
and Galtier models as special cases, has the advantage of
adapting to the right model in the course of parameter
optimization so that it can analyse all relevant types of
data appropriately, but suffers from heavy computing
loads with large amounts of data.

A recent empirical test of the covarion hypothesis has
shown that the frequency of covarion-sites increases with
genetic distance [52]. This suggests covarion-based phylo-
genetic inference may be useful in the estimation of the
divergence time of the species spanning longer time peri-
ods. It will therefore be interesting to revisit the estimates

of dates of divergence using relaxed molecular clock meth-
ods [53] in conjunction with covarion models of evolu-
tion.

In addition to the advantages of PROCOV for phyloge-
netic inference under the general model, we also demon-
strated that it had more power to detect covarion sites
than several previous methods. It can also be used to pin-
point those lineages where covarions are located (data not
shown). Like the general covarion model, covarion and
RAS site likelihoods are also separately calculated under
the Galtier model. By contrast, the TS models is not a mix-
ture of covarion and RAS processes; the Huelsenbeck
model, as originally formulated, does not calculate cov-
arion and RAS site likelihoods, separately. Therefore only
covarion site likelihoods are calculated for the TS and
Huelsenbeck models. Nevertheless, one can run two sep-
arate analyses with PROCOV, one under either of the two
models, another under the RAS model, and compare their
site likelihood differences to obtain Λ's for sites.

All of the four covarion models considered here are sta-
tionary time reversible models with an expectation that
the proportion of variable sites (pvar) is the same in all
evolutionary lineages. However, this assumption can be
overly restrictive as proportions of variable sites may vary
in different lineages [22,54]. A sequence generator for
generating lineage-specific variation in the pvar is recently
reported [55]. A fruitful area of future development of
PROCOV may therefore be to model both changes in the
proportion of variable sites and the covarion-based rate
changes and switches. Furthermore, the current imple-
mented covarion models assume that rate switching
between 'on' and 'off' states and among different 'on' rates
are homogenous across sites and the tree, which may not
be realistic. This is especially suspicious for large phyloge-
nomic datasets that are from the concatenation of multi-
ple genes of diverse functions with different functional
constraints. For instance, we previously reported that the
covarion parameters, like the α parameter of the RAS proc-
ess, varied across different protein families (see Supple-
mentary Table one of [10]). It will be interesting to model
this heterogeneity in switch rates variation across sites and
lineages and implement it in PROCOV without increasing
computational load too much. Finally, the current release
of PROCOV (version 2.0) only handles protein sequence
data. Analyses of DNA substitutions under covarion mod-
els have found applications in inferring the evolutionary
history of viral genes [30,31,56]. Future extension of PRO-
COV to allow analyses of DNA sequence data may be use-
ful to investigate these kinds of data sets.

Conclusion
PROCOV is a phylogenetic program to infer phylogeny
under covarion models, which may be especially useful
for problems involving estimates of deep divergences in
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the tree of life, where rates of evolution at sites are likely
to have changed over the tree. It can also be used to detect
covarion sites, which when combined with structural bio-
informatics approaches, can be a powerful method to
study lineage-specific functional shifts in protein families
as well as protein adaptation.

Availability and requirements
* Project name: PROCOV: maximum likelihood estima-
tion of protein phylogeny under covarion models (ver-
sion 2.0).

* Project home page: http://www.mathstat.dal.ca/
~hcwang/Procov.

* Operating system(s): Any Unix/Linux platform.

* Programming language: C.

* Other requirements: GCC (version 3 or higher) or com-
patible compiler. It is recommended to have the BLAS/
ATLAS libraries http://math-atlas.sourceforge.net
installed on the Unix/Linux system so that PROCOV can
run faster. Versions of BLAS and LAPACK, such as the
generic versions from ATLAS, Netlib, or vendor-provided
libraries that work with your compiler should be installed.
The Makefile should then be edited to match the type of
the compiler and the path and library names of the BLAS
and LAPACK libraries used. The Makefile of the PROCOV
source code gives some instances of the BLAS installation
on a few commonly-used unix systems.

* License: GNU GPL.

* Any restrictions to use by non-academics: None.
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