Selected Formulas

$$Range = Max - Min$$

$$IOR = Q3 - Q1$$

Outlier Rule-of-Thumb: $y < Q1 - 1.5 \times IQR$ or $y > Q3 + 1.5 \times IQR$

$$\bar{y} = \frac{\sum y}{n}$$

$$s = \sqrt{\frac{\sum (y - \overline{y})^2}{n - 1}}$$

$$z = \frac{y - \mu}{\sigma}$$
 (model based)

$$z = \frac{y - \bar{y}}{s}$$
 (data based)

$$r = \frac{\sum z_x z_y}{n-1}$$

$$\hat{y} = b_0 + b_1 x$$
 where $b_1 = r \frac{s_y}{s_x}$ and $b_0 = \bar{y} - b_1 \bar{x}$

$$P(\mathbf{A}) = 1 - P(\mathbf{A}^{\mathrm{C}})$$

$$P(\mathbf{A} \text{ or } \mathbf{B}) = P(\mathbf{A}) + P(\mathbf{B}) - P(\mathbf{A} \text{ and } \mathbf{B})$$

$$P(\mathbf{A} \text{ and } \mathbf{B}) = P(\mathbf{A}) \times P(\mathbf{B} | \mathbf{A})$$

$$P(\mathbf{B} \mid \mathbf{A}) = \frac{P(\mathbf{A} \text{ and } \mathbf{B})}{P(\mathbf{A})}$$

A and **B** are independent if $P(\mathbf{B} | \mathbf{A}) = P(\mathbf{B})$. Then $P(\mathbf{A} \text{ and } \mathbf{B}) = P(\mathbf{A}) \times P(\mathbf{B})$

$$E(X) = \mu = \sum x P(x)$$

$$Var(X) = \sigma^2 = \sum (x - \mu)^2 P(x)$$

$$E(X \pm c) = E(X) \pm c$$

$$Var(X \pm c) = Var(X)$$

$$E(aX) = aE(X)$$

$$Var(aX) = a^2 Var(X)$$

$$E(AX) = AE(X)$$

$$E(X \pm Y) = E(X) \pm E(Y)$$

$$E(aX) = aE(X)$$

$$E(X \pm Y) = E(X) \pm E(Y)$$

$$Var(AX) - a \ Var(X)$$

$$Var(X) + Var(Y) \text{ if } X \text{ and } Y$$

$$Are independent$$

Binomial:

$$P(x) = {}_{n}C_{x}p^{x}q^{n-x}$$
 $\mu = np$ $\sigma = \sqrt{npq}$

$$\hat{p} = \frac{x}{n}$$
 $\mu(\hat{p}) = p$ $SD(\hat{p}) = \sqrt{\frac{pq}{n}}$

Sampling distribution of \bar{y} :

(CLT) As n grows, the sampling distribution approaches the Normal model with

$$\mu(\overline{y}) = \mu$$
 $SD(\overline{y}) = \frac{\sigma}{\sqrt{n}}$

Inference:

Confidence interval for Parameter = $Estimate \pm Critical \ value \times SE(Estimator)$

Test statistic =
$$\frac{Estimate - Parameter}{SE(Estimator)}$$
 [Replace SE by SD if latter is known]

Parameter	Estimator	SD (Estimator)	SE (Estimator)
p	P	$\sqrt{\frac{pq}{n}}$	$\sqrt{rac{\widehat{p}\widehat{q}}{n}}$
$p_1 - p_2$	$\hat{p}_1 - \hat{p}_2$	$\sqrt{\frac{p_1q_1}{n_1} + \frac{p_2q_2}{n_2}}$	$\sqrt{\frac{\hat{p}_1\hat{q}_1}{n_1} + \frac{\hat{p}_2\hat{q}_2}{n_2}}$
μ	7	$\frac{\sigma}{\sqrt{n}}$	$\frac{s}{\sqrt{n}}$
$\mu_1 - \mu_2$	$\overline{y}_1 - \overline{y}_2$	$\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$	$\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$
μ_d	а	$\frac{\sigma_d}{\sqrt{n}}$	$\frac{s_d}{\sqrt{n}}$
σ_{ϵ}	$s_{\theta} = \sqrt{\frac{\sum (y - \hat{y})^2}{n - 2}}$	(divide by $n-k-1$ in multiple regression)	
β 1	<i>b</i> ₁	(in simple regression)	$\frac{s_{\theta}}{s_{\chi}\sqrt{n-1}}$
μ_{ν}	Ŷ.	(in simple regression)	$\sqrt{SE^2(b_1)\cdot(x_{\nu}-\vec{x})^2+\frac{s_{\theta}^2}{n}}$
Y _v	Ŷ.	(in simple regression)	$\sqrt{SE^{2}(b_{1})\cdot(x_{\nu}-\vec{x})^{2}+\frac{S_{e}^{2}}{n}+S_{e}^{2}}$

Pooling: For testing difference between proportions: $\hat{p}_{pooled} = \frac{y_1 + y_2}{n_1 + n_2}$

For testing difference between means (when
$$\sigma_1 = \sigma_2$$
): $s_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}$

Substitute these pooled estimates in the respective SE formulas for both groups when assumptions and conditions are met.

Chi-square:
$$\chi^2 = \sum \frac{(Obs - Exp)^2}{Exp}$$

One-way ANOVA: $SS_T = \sum \sum (\bar{y}_j - \bar{y})^2$; $MS_T = SS_T/(k-1)$
 $SS_E = \sum \sum (\bar{y}_{ij} - \bar{y}_j)^2$; $MS_E = SS_E/(N-k)$
 $F = MS_T/MS_E$ with $df = (k-1, N-k)$

- You can make inferences about the difference between two independent means, or about the mean of paired differences using t-models.
- You can make inferences about distributions of categorical variables using chi-square models.
- You can make inferences about association between categorical variables using chi-square models.
- You can make inferences about the coefficients in a linear regression model using t-models.

Now for some opportunities to review these concepts. Recareful. You have a lot of thinking to do. These review exercises mix questions about proportions, means, chi square and regression. You have to determine which of our inference procedures is appropriate in each situation. Then you have to check the proper assumptions and conditions. Keeping track of those can be difficult, so first we summarize the many procedures with their corresponding assumptions and conditions on the next page. Look them over carefully . . . then, on the the Exercises!

And the Conditions that Support or Override them

Assumptions for Inference Proportions (z) One sample Individuals respond independently. Sample is sufficiently large.

- Two sample
- 1. Samples are independent of each other.
- 2. Individual responses in each sample are independent.
 - 3. Both samples are sufficiently large.

- One sample (df = n-1)
 - One sample (df = n 1)

 1. Individuals respond independently.
 - 2. Population has a Normal model.
- Two independent Samples (df from technology)
 - 1. Samples are independent of each other.
 - 2. Individual responses in each sample are independent.
- 3. Both populations are Normal.
- Matched pairs (df = n-1)
 - 1. Each individual is paired with an individual in the other sample;

 - Individual differences are independent.
 Population of differences is Normal.

- Distributions/Association (χ^2) ■ Goodness of fit [df = # of cells -1; one categorical variable, one sample compared with population model] 1. (Are they?)
 - 1. Data are counts of individuals classified into categories. 2. Individuals' responses are independent.
 - 3. Sample is sufficiently large.
- Homogeneity [df = (r-1)(c-1); samples from many populations compared on one cateogorical variable] 1. Data are counts of individuals classified into categories.

 - 2. Individuals' responses are independent.
 - 3. Groups are sufficiently large.
- Independence [df = (r-1)(c-1); sample from one population classified on two categorical variables] 1. Data are counts of observations classified into categories.
 2. Individuals' responses are independent.
 2. SRSs.

2. SRSs:

1. (Are they?)

1. SRS.

2. Successes ≥ 10 and failures ≥ 10 .

1. (Think about how the data were collected.) 2. Both are SRSs OR random allocation.

2. Histogram is unimodal and symmetric.*

3. Both histograms are unimodal and symmetric.*

2. SRSs OR random allocation.

3. All expected counts ≥ 5 .

3. Successes \geq 10 and failures \geq 10 for both samples.

1. (Think about the design.)

1. (Think about the design.)

3. Histogram of differences is unimodal and symmetric.*

2. SRSs OR random allocation.

3. All expected counts ≥ 5.

Sily 'the space a security to the section of the se

2. SRSs OR random allocation.

3. Group is sufficiently large. 3. All expected counts ≥ 5. Regression with One Predictor and One Response Variable - Both Quantitative (t, df = n-2)

- 1. Form of relationship is linear.
- 2. Errors are independent.
- 4. Errors follow a Normal model.

- 1. Scatterplot of y against x is straight enough, Scatterplot of residuals ag predicted values shows no special structure (e.g. bends).
- 2. No apparent pattern in plot of residuals against predicted values or again (if data collected in time sequence).
- 3. Plot of residuals against predicted values has constant spread, doesn't Thick
- 4. Histogram of residuals is approximately unimodal and symmetric, or Nor ability plot is reasonably straight.* Medically steam bourners that the special party of memorial selection ones reint attitutes.

**Less critical as n increases Note: For all of these procedures, sampling more than 10% of the population compromises independence—but in a good way! Be aware that P-values and confi coefficients calculated in the manner we have discussed become overly conservative (so if your ME or P-value is just a bit lacking, get a statistician to help in eluntat proposamore, dans in the appropriate adjustments). With a successful of the second of

				Quick Guide	to interence	Show			Tell?
	Think				27.84			TO THE STATE OF TH	
Ī	One sample	4 2 3 8	Taring	Sampling Model	Parameter	Estimate	e	OE	Chapter
nce of	or two?		1000001	Sampling mode.	3A, \$ 19 JA		e is the second	$\sqrt{\frac{\hat{p}\hat{q}}{n}}$	15
sa intions	One	One	-Proportion z-Interval	Z	P	p	10 10 10 10 10 10 10 10 10 10 10 10 10 1	$\sqrt{\frac{\rho_0 q_0}{n}}$	16, 17
	sample	1	1-Proportion z-Test					$\hat{p}_1\hat{q}_1 + \hat{p}_2\hat{q}_2$	21
	Two	2-Proportion Two z-Interval		Z	$p_1 - p_2$	$\hat{p}_1 - \hat{p}_2$	\hat{p}_2	$\sqrt{n_1}$ n_2 $\sqrt{\hat{n}\hat{a}} \hat{p}\hat{q} \hat{q} \hat{q} \frac{y_1 + y_2}{n_1 + n_2}$	5 ²³ (.d)
	indepen	groups 2-Proportion z-Test		4				$\sqrt{\frac{\hat{p}\hat{q}}{n_1} + \frac{\hat{p}\hat{q}}{n_2}}, \hat{p} = \frac{y_1 + y_2}{n_1 + n_2}$	18
2	One		t-Interval t-Test	df = n - 1	μ	Ţ.		$\frac{s}{\sqrt{n}}$	19
	Tw	Two 2-Sample t-Test andependent 2-Sample t-Interval		t df from	$\mu_1 - \mu_2$	y ₁ -	\overline{y}_2	$\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$	-
	grou			technology t	1		d	$\frac{s_d}{\sqrt{n}}$	20
		tched irs	Paired t-Test Paired t-Interval	df = n - 1	μ_d		- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	1300 x 1 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2	ie state.
tribution	0	ne nple	Goodness of fit	$df = \frac{\chi^2}{cells - 1}$	l statt	areales il Sui a la la Sui a la la	agrica Carrier Still res	us. Agangoing sive as and Agangoing sive	
(one ategorica variable)	al indep	any pendent mples	Homogeneity χ^2 Test	, , , , , , , , , , , , , , , , , , ,	1 1 100	Test sta	atistic =	$\sum \frac{(\text{obs} - \text{exp})^2}{\text{exp}}$	22
lepende (two	nce One	Independence	df = (r-1)(c-1)	1)			ersen val pl	Fatt Out	
ategorio		ample	χ^2 Test	13-11-11		-1	0.7786	S _e	
Association (two quantitative variables)	15)	on One ive sample	Linear Regression t-Test or Confidence Interval for β Confidence Interval for μ _ν Prediction	ce state of the st	β_1	i j	<i>b</i> ₁	$\frac{s_x\sqrt{n-1}}{\text{(compute with technology)}}$	2
				$\frac{1}{df = n - 2}$	μν		ŷ _v	$\sqrt{SE^2(b_1)\cdot(x_v-\bar{x})^2+\frac{s}{2}}$	23
	ative				y _v		ŷ _v	$\sqrt{SE^2(b_1)\cdot(x_n-\bar{x})^2+\frac{s_e^2}{n}}$	+ s _e ²
			Interval for y _v	1 2 2 2		-			
	ence	One sample		Sampling Mode	al Param	eter	Estimate	SE	Cha

time
."
i prob-