
Multiple Regression

Readings: DeVeaux et al Chapters 30, 31

1. data consist of measurements on n subjects. For each subject, there

is a measurement on the dependent variable y, and on each of q inde-

pendent variables x1, x2, . . . , xq.

2. The statistical model is

y = α + β1x1 + β2x2 + .  .  .  + βqxq + ε
Letting µy|x stand for “the mean of y, given x”, another way to write 
the model is

y = µy|x + ε

3. The errors are assumed to be a sample from N(0, σ2).

4. Values for α and β1, . . . , βq are estimated from the data by the method

of least squares.

5. The regression equation, or prediction line, is

ŷ = α̂ + β̂1x1 + . . . β̂qxq

circum length bwt gage mage toxem gage×toxem

y x1 x2 x3 x4 x5 x6 = x3 × x5
27 41 1360 29 37 0 0

29 40 1490 31 34 0 0

30 38 1490 33 32 0 0

28 38 1180 31 37 0 0

29 38 1200 30 29 1 30

23 32 680 25 19 0 0

22 33 620 27 20 1 27
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Example: We are interested in predicting head circumference on the basis of 
gestational age, toxemia, and the product of those two variables. The scatter 
plot below shows data points of 100 infants but due to both gestational age 
and circumference being rounded to the nearest intergers, many data points 
are overlapped. 
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The regression equation is

y = α + β1x3 + β2x5 + β3(x3x5) + ε

This model allows for different slopes and intercepts depending on pres-

ence or absence of toxemia.

The following table gives the mean of the regression equation for spec-

ified values of parameters.

no toxemia (x5 = 0) toxemia (x5 = 1)

α + β1x3 (α + β2) + (β1 + β3)x3
β3 = 0 α + β1x3 (α + β2) + β1x3
β2 = 0 α + β1x3 α + (β1 + β3)x3
β2 = β3 = 0 α + β1x3 α + β1x3

hypothesis interpretation

no restrictions different slopes and intercepts for toxemic vs non-toxemic

β3 = 0 same slope, different interecpts for toxemic vs non-toxemic

β2 = 0 different slopes, same intercepts for toxemic vs non-toxemic

β2 = β3 = 0 no difference in slope or intercept for toxemic vs non-toxemic
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A computer program gave the following partial output:

Regression Analysis of circumference on gestage, toxemia,

gage*tox

The regression equation is

circum = 1.76 + 0.865 gestage - 2.82 toxemia + 0.046 gage*tox

Predictor Coef SE Coef T P

Constant 1.763 2.102 0.84 0.404

gestage 0.86461 0.07390 11.70 0.000

toxemia -2.815 4.985 -0.56 0.574

gage*tox 0.0462 0.1635 0.28 0.778

S = 1.51460 R-Sq = 65.3\% R-Sq(adj) = 64.2\%

Analysis of Variance

Source DF SS MS F P

Regression 3 414.53 138.18 60.23 0.000

Residual Error 96 220.22 2.29

Total 99 634.75

The computer output gives the least squares estimates together with es-

timated standard errors. These are used to make confidence intervals and

test hypotheses. For example β̂2 = −2.815, and the estimated standard

error of β̂2 is 4.985.
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1. hypothesis tests for individual coefficients

• To test the hypothesis H0 : βj = 0 against the two sided alterna-

tive, calculate the observed value of the test statistic

t =
β̂j

ŝ.e.(β̂j)

• The p-value is 2P (tn−1−q > |tobs|).
• eg. for testing β2 = 0, the observed test statistic is tobs =

−2.815/4.985 = −.56. The p-value is 2P (t96 > | − .56|) = .574

• Note that the degrees of freedom of this hypothesis test (and the

confidence interval below) is the degrees of freedom for Residual

Error.

• When testing the coefficient associated with the variable xj, the

actual hypothesis that is being tested is:

H0 : variable xj has no effect, given that all all other pre-

dictor variables are in the model

HA : variable xj has an effect, given that all all other pre-

dictor variables are in the model

alternatively

H0 : variable xj provides no significant additional reduction in

SSE given that all all other predictor variables are in

the model

HA : variable xj provides a significant additional reduction in SSE,

given that all all other predictor variables are in the

model

5



2. Confidence Intervals for individual coefficients

• A 100(1− α)% CI for βj is β̂j ± tα/2,n−1−qŝ.e.(β̂j)
• eg. a 95% CI for β2 is β̂2 ± t.025,96ŝ.e.(β̂2), or

−2.815± 1.985(4.985), or (-12.71,7.08).
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3. Overall utility of the regression model

• The F statistic is testing the hypothesis of no effect of any of the

variables

H0 : β1 = β2 = . . . = βq = 0

HA: one or more of β1, β2, ..., βq are non-zero

• the p-value for this test is P (Fq,n−1−q > Fobs)

• in the example Fobs = 60.23, and the p-value is P (F3,96 > 60.23) <

.001 from tables

• The goodness of fit of the linear regression line is measured by the

coefficient of determination

R2 =
SSR

SST

, the ratio of the regresson sum of squares to the total sum of

squares.

• R2 is the fraction of the total variability in y accounted for by the

regression line, and ranges between 0 and 1. R2 = 1.00 indicates

a perfect (linear) fit, while R2 = 0.00 is a complete lack of linear

fit.

• In the example, the linear effects of the three variables gestage,

toxemia and gestage× toxemia (known as the interaction between

gestational age and toxemia), account for 65.3% of the variation

in head circumference

An estimate of σ is σ̂ =
√
MSE, where MSE = SSE/(n− 1−

q). In the example this is
√

2.29 = 1.51.
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4. Model selection

• One strategy for model selection is to fit a collection of models,

and pick the model which has the largest adjusted R2. The

adjustment takes into account the number of predictors in the

model, and guards against overfitting.

There are several other criteria that can be used, including Mal-

low’s Cp and Akaike’s Information Criterion (AIC).

Don’t choose a model based on R2, as it always increases when

more predictors are included.

• Another strategy is to fit a large model to start, and then remove

variables one at a time as the hypothesis tests for single variables

dictate. For example, in the above multiple regression, the inter-

action term is not significant, and in fact, the interaction is the

least significant predictor. Therefore, we can remove it from the

model.

This leads to a second model

y = α + β1x3 + β2x5 + ε

This is a parallel line regression model. There is a common slope,

but different intercepts depending on presence or absence of toxemia. In

particular, if toxemia=0 (x5 = 0), the model is

y = α + β1x3 + ε

If toxemia=1 (x5 = 1), the model is

y = (α + β2) + β1x3 + ε
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Regression Analysis of circumference on gestage and toxemia

The regression equation is

circum = 1.50 + 0.874 gestage - 1.41 toxemia

Predictor Coef SE Coef T P

Constant 1.496 1.868 0.80 0.425

gestage 0.87404 0.06561 13.32 0.000

toxemia -1.4123 0.4062 -3.48 0.001

S = 1.50739 R-Sq = 65.3\% R-Sq(adj) = 64.6\%

Analysis of Variance

Source DF SS MS F P

Regression 2 414.34 207.17 91.18 0.000

Residual Error 97 220.41 2.27

Total 99 634.75

• All of the terms in this model (gestage and toxemia) are significant

(small associated p-values), so we can stop taking predictive variables

out of the model.

• This simpler model still explains 65.3% of the variability in circum-

ference.

• Note that, compared to the model which includes the interaction, R2

has no change, but adjusted R2 has increased.
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Here’s another example, starting with all predictors, but no interaction

variables, and eliminating variables one at a time.

1. The regression equation is

circum = 7.21 + 0.0083 length + 0.526 gestage +

0.00426 birthwt - 0.0301 momage - 0.516 toxemia

Predictor Coef SE Coef T P

Constant 7.210 2.129 3.39 0.001

length 0.00827 0.06534 0.13 0.900

gestage 0.52619 0.08356 6.30 0.000

birthwt 0.0042555 0.0008867 4.80 0.000

momage -0.03007 0.02223 -1.35 0.179

toxemia -0.5161 0.3696 -1.40 0.166

S = 1.26902 R-Sq = 76.2\% R-Sq(adj) = 74.9\%

Analysis of Variance

Source DF SS MS F P

Regression 5 483.372 96.674 60.03 0.000

Residual Error 94 151.378 1.610

Total 99 634.750

Baby’s length is least important predictor, given that other variables

are in the model, and non-significant, so remove at next step.
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2. Regression Analysis: circum versus gestage, birthwt, momage, tox-

emia

The regression equation is circum = 7.35 + 0.529 gestage + 0.00433

birthwt - 0.0298 momage - 0.516 toxemia

Predictor Coef SE Coef T P

Constant 7.352 1.800 4.08 0.000

gestage 0.52881 0.08053 6.57 0.000

birthwt 0.0043275 0.0006764 6.40 0.000

momage -0.02979 0.02201 -1.35 0.179

toxemia -0.5159 0.3677 -1.40 0.164

S = 1.26243 R-Sq = 76.1\% R-Sq(adj) = 75.1\%

Analysis of Variance

Source DF SS MS F P

Regression 4 483.35 120.84 75.82 0.000

Residual Error 95 151.40 1.59

Total 99 634.75

Note that R2 decreased, but adjusted R2 increased.

Mom’s age is now least important, and non-significant, so remove.
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3.

The regression equation is

circum = 7.10 + 0.508 gestage + 0.00435 birthwt - 0.513 toxemia

Predictor Coef SE Coef T P

Constant 7.096 1.798 3.95 0.000

gestage 0.50805 0.07940 6.40 0.000

birthwt 0.0043541 0.0006791 6.41 0.000

toxemia -0.5128 0.3693 -1.39 0.168

S = 1.26789 R-Sq = 75.7\% R-Sq(adj) = 74.9\%

Analysis of Variance

Source DF SS MS F P

Regression 3 480.43 160.14 99.62 0.000

Residual Error 96 154.32 1.61

Total 99 634.75

Both adjusted R2 and R2 have decreased. toxemia is non-significant,

so remove.
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4. The regression equation is

circum = 8.31 + 0.449 gestage + 0.00471 birthwt

Predictor Coef SE Coef T P

Constant 8.308 1.579 5.26 0.000

gestage 0.44873 0.06725 6.67 0.000

birthwt 0.0047123 0.0006312 7.47 0.000

S = 1.27394 R-Sq = 75.2\% R-Sq(adj) = 74.7\%

Analysis of Variance

Source DF SS MS F P

Regression 2 477.33 238.66 147.06 0.000

Residual Error 97 157.42 1.62

Total 99 634.75

• All variables are now highly significant.

• Once a model has been selected, good statistical practice dictates the

assessment of model assumptions. In this case, that would include

assessing the assumption of normality.

• The predicted circumference of a baby with gestational age 30 weeks

and a birthweight of 1200 g is

8.308 + .44873(30) + .0047123(1200) = 27.43.
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