
Survival Analysis - part 2

Testing the Equality of Two Survival Curves

• The log rank test, a special case of the Cochran-Mantel-Haenszel
test, is used to test H0 : ST (t) = SC(t).

• The null hypothesis states that the survival functions are the same for
each time t.

• Calculation of the test statistic is shown below.

• At the i’th observed failure time ti, let

– Mi be the number at risk in the treatment group

– Ti be the total number at risk (for both groups)

– ai be the number of deaths in the treatment group

– Ni be the total number of deaths (for both groups)
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• At each failure time ti, we construct a 2 by 2 table comparing the
number of failures in the two groups.

Dead Surviving At Risk
Treat ai Mi − ai Mi

Control Ni − ai Ti −Ni −Mi + ai Ti −Mi

Ni Ti −Ni Ti

• If the failure rate is the same in both groups, the expected number of
deaths in the Treatment group is MiNi/Ti, which is the number at risk
Mi times the combined proportion of deaths.

• The test statistic compares the observed to expected number of deaths
in the treatment group, standardized by an estimate of its variance

Z =
∑
i

(ai − Ei)/
√∑

i

Vi

where

Ei =
MiNi

Ti

and

Vi =
MiNi(Ti −Mi)(Ti −Ni)

T 2
i (Ti − 1)

• The p-value against the two-sided alternative is

2P (Z > |Zobs|)

• For the leukemia study, the necessary information to construct these
tables is as follows:
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Num at Risk Num of Deaths
Treat Total Treat Total

ti Mi Ti ai Ni Ei Vi
1 21 42 0 2 1.00 0.49
2 21 40 0 2 1.05 0.49
3 21 38 0 1 0.55 0.25
4 21 37 0 2 1.14 0.48
5 21 35 0 2 1.20 0.47
6 21 33 3 3 1.91 0.65
7 17 29 1 1 0.59 0.24
8 16 28 0 4 2.29 0.87
10 15 23 1 1 0.65 0.23
11 13 21 0 2 1.24 0.45
12 12 18 0 2 1.33 0.42
13 12 16 1 1 0.75 0.19
15 11 15 0 1 0.73 0.20
16 11 14 1 1 0.79 0.17
17 10 13 0 1 0.77 0.18
22 7 9 1 2 1.56 0.30
23 6 7 1 2 1.71 0.20
Total 9 19.25 6.26

• The test statistic is

Z = (9− 19.25)/
√

6.26 = −4.098

• The P value is 2P (Z > | − 4.098|) = 4.17 × 10−5, so we conclude
that there is very strong evidence against the null hypothesis that the
survival curves are the same.

• Note that Z2 = 16.79 which equals the χ2 value obtained from the
computer in the last set of notes.
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Proportional hazards model

• The hazard function is the rate of failure in a small interval ∆ after
time t, given that the subject has survived until t

h(t)∆ = P (t ≤ T < t+ ∆|T ≥ t)

• If the failure time T has cumulative distribution function F (t), density
f(t) = F ′(t) and survival function S(t) = 1 − F (t), then the hazard
function is

h(t) =
f(t)

S(t)

• The simplest probability model for survival is the exponential, with
density

f(t) = λe−λt

The cumumlative distribution function is

F (t) = 1− e−λt

and survival function
S(t) = e−λt

• The hazard function in this case is constant over time

h(t) =
λe−λt

e−λt
= λ

• More realistic hazard functions are increasing, decreasing or ‘bathtub’
shaped - first decreasing, then constant, then increasing.

• To compare two groups, like Treatment and Control, we can compare
their hazard functions.

– A smaller hazard indicates a slower rate of failures.

• Often it is assumed that hazard functions for two groups are propor-
tional, so that

hT (t) = khC(t)

for some k.
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• The following shows two cases with proportional hazards (top) and two
where the hazards are not proportional (bottom).
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• Cox’s proportional hazard regression model is used to model survival
as a function of predictors or covariates X1, . . . , Xp.

• Cox’s model says that, if an individual has predictors X1, . . . , Xp, then
their hazard is

h(t) = h0(t)exp(b1X1 + . . .+ bpXp)

• h0(t) is the baseline hazard, estimated nonparametrically.

• The term exp(b1X1 + . . . + bpXp) is 1 if all X’s are zero, and positive
otherwise.

• The probability of survival at time t is estimated by

S(t) = exp(−H(t))

where H(t) is the cumulative hazard, obtained by integrating h(s) up
to time t

• The hazard ratio for two values of a covariate Xi (with all other covari-
ates held the same) is

h1(t)

h2(t)
= exp(bixi1 − bixi2) = exp[bi(xi1 − xi2)]

• Equivalently

log

(
h1(t)

h2(t)

)
= bi(xi1 − xi2)

• and we see that bi is the logarithm of the hazard ratio associated with
a unit increase in Xi, with all other variables held constant.

• If Xi is binary, such as an indicator equal to 1 for the treatment group
and 0 for the control group, then

h1(t)

h2(t)
= exp(bi)

• A hazard ratio greater than 1 implies subjects with Xi1 fare less well
than those with Xi2.
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• Computer output for the leukemia data is shown below.

> leuktr.Surv=Surv(leuk.t,1-leuk.cen)

> leuk.ph=coxph(leuktr.Surv~leuktr)

> leuk.ph=coxph(leuktr.Surv~leuk.tr)

> print(leuk.ph)

Call:

coxph(formula = leuktr.Surv ~ leuk.tr)

coef exp(coef) se(coef) z p

leuk.tr -1.57 0.208 0.412 -3.81 0.00014

Likelihood ratio test=16.4 on 1 df, p=5.26e-05

n= 42, number of events= 30

• In this case the only covariate is an indicator for Treatment vs Control.

• A test for difference between Treatment and Control is given by a test
that the β coefficient is zero.

• The output gives us the Z statistic (coef/se) and P -value.

• Note that this test statistic is close to the log rank statistic obtained
above.

• One reason they are slightly different is that this approach assumes
that the hazards are proportional whereas the log rank test does not.
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