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Abstract
Summary: A self-organizing tree growing neural network
was applied to classify amino acids and amino acid
exchange matrices.
Availability: SOTA, is freely available by anonymous FTP or
at http://www.cnb.uam.es/~bioinfo/Software/sota.
Contact: carazo@cnb.uam.es

Most protein sequence analysis tasks rely on a measure of simi-
larity between different amino acids. There are at least 13 pub-
lished scoring matrices for amino acids, based on genetic codes,
physicochemical properties, observed frequency of mutations,
secondary structural matching and structural properties (John-
son and Overington, 1993). Various attempts have been made
to group amino acids based on these matrices, including dendro-
grams (Sneath, 1966; Doolittle, 1979; Johnson and Overington,
1993; Jones et al., 1994), Venn diagrams (Dickerson and Geis,
1969; Taylor, 1986; Taylor and Jones, 1993), principal compo-
nents analysis (Johnson and Overington, 1993), multi-
dimensional projection (Jones et al., 1992, 1994; Taylor and
Jones, 1993) and Sammon’s non-linear mapping (Agrafiotis,
1997). In particular, Johnson and Overington (1993) used both
hierarchical clustering by the KITSCH program of Felsenstein’s
Phylogenetic Inference Package (PHYLIP) and the principal
component projection to make an exhaustive examination of 13
amino acid exchange matrices. Here we apply a new artificial
neural network (ANN)-based approach to examine these ma-
trices and cluster the amino acids.

The ANN method exploited here is our recently developed
Self-Organizing Tree Algorithm (SOTA; Dopazo and Carazo,
1997), which is based on both Kohonen’s self-organizing map-
ping (Kohonen, 1990) and Fritzke’s growing cell structure
(Fritzke, 1994). In this work, we have used a modified form of
SOTA, which we will refer to as SOTA/DIST, which was orig-
inally designed to cluster protein sequences, based on their dis-
tance matrix, although its use here has been to cluster amino
acids based on an amino acid exchange matrix. Thirteen such
scoring matrices were extracted from Johnson’s collection of 15
amino acid exchange matrices (http://www.btk.utu.fi/molmol/
matrices.html), including those of Dayhoff PAM250, Doolittle,
Fitch, Gonnet, Grantham, Henikoff, Johnson, Jones, Levin,

McLachlan, Miyata, Rao and Risler. L1 distances were calcu-
lated between pairs of columns in a particular matrix. For
example, the distance between alanine and cysteine scoring dis-
tributions of a matrix, X, is calculated as follows:

Dala,cys = |Xala→ala – Xcys→ala| + |Xala→cys – Xcys→cys| +
|Xala→asp – Xcys→asp| + … + |Xala→tyr – Xcys→tyr |

We further cluster the 13 matrices with SOTA/DIST, to exam-
ine relationships among them. The Euclidean distance between
every two matrices (X, Y) was calculated following the equation
described by Johnson and Overington (1993):

Dx,y = [(Xala→ala – Yala→ala)2 + (Xala→cys – Yala→cys)2 +
(Xala→asp – Yala→asp)2 + … + (Xtyr→trp – Ytyr→trp)2 +
(Xtyr→tyr – Ytyr→tyr)2]1/2

When running SOTA/DIST to cluster amino acids using each
of the 13 scoring matrices, we reached algorithmic convergence
in all cases. Five of the 13 dendrograms corresponding to these
classifications are shown in Figure 1a–e (the other eight dendro-
grams are not shown). Results based on nine of the 13 matrices
(those of Dayhoff, Doolittle, Gonnet, Grantham, Henikoff,
Johnson, Jones, McLachlan and Miyata) show that the amino
acids are grouped into two main clusters: small, polar and
charged side chains {A, G, S, T, P, D, E, N, Q, H, K, R}, and
hydrophobic side chains {C, I, V, L, M, F, Y, W}. Within the first
cluster, small amino acids and charged amino acids/acid amides
are separated into two subclusters. Within the second cluster, {I,
L, M, V} and aromatic {F, W, Y} are two subclusters, while the
location of C is changed variously. In most cases, C and W are
much distant from other amino acids. These results correspond
to the well-known groupings of amino acids: volume, hydro-
phobicity, charges (N-acid, H-basic), acid amide and aromatic
groups. The grouping by SOTA/DIST based on Dayhoff
PAM250 is perfectly consistent with the original classification
by George et al. (1990) (Figure 1a), followed by groupings
based on the matrices of Grantham, Henikoff, Johnson and
Jones. Groupings based on the matrices of Doolittle, Gonnet and
McLachlan exhibit similar overall characteristics of physico-
chemical relationships. The matrix of Levin, as well as the three
matrices based on two-dimensional or three-dimensional struc-
tures as well as residue volumes (Miyata, Rao and Risler), only
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Fig. 1. (a–e) Dendrograms of the 20 amino acids constructed by the
SOTA/DIST algorithm based on five amino acid scoring matrices.
(f) Dendrogram of the 13 amino acid exchange matrices constructed
by SOTA/DIST.

show parts of the characteristics mentioned above. The only ex-
ception to the general classification schema is the classification
obtained using the matrix of Fitch, which does not show any
noticeable physicochemical relationships of amino acids (Figure
1b). This last result is not too surprising, for the Fitch matrix is
only derived from similarity of genetic encoding of amino acids.
The same result was reached based on the matrix by Sammon
mapping (Agrafiotis, 1997). 

SOTA/DIST was then used to cluster the scoring matrices
themselves. The result shows that the 13 matrices are clustered
into several distinct groups that are consistent with the founda-
tion on which they were based (Figure 1f). The matrices of Day-
hoff, Johnson, McLachlan, Levin, Henikoff, Gonnet and Jones,
which are all derived from sequence family (blocks) alignment
and five of which are based on observed frequency of residue
mutations, are in the same cluster. The matrix of Doolittle,
which is based on both structure and genetic encoding, as well
as the matrix of Fitch, based only on genetic encoding, are clus-
tered together. The last result was also obtained when using the
hierarchical clustering approach of the UPGMA (average link-
age) method, but not when using the PHYLIP/KITSCH method
(Johnson and Overington, 1993). The four matrices based on
residue volumes, two-dimensional and three-dimensional struc-
tures (the Grantham, Miyata, Risler and Rao matrices) are all in
a distinct cluster. A comparison of the results of grouping the 13
matrices previously performed by Johnson and Overington
(1993) with principal components projection and hierarchical
clustering by PHYLIP/KITSCH clearly indicates that the result
by SOTA/DIST is quite similar to that obtained by principal
components analysis rather than by hierarchical clustering.

Considering SOTA’s performance on classifying amino acids
and amino acid exchange matrices, we can conclude that the
neural network approach used here is able to capture the essen-
tial features of a scoring matrix that corresponds with the physi-
cochemical and structural properties of the amino acids, as well
as to classify different scoring matrices according to the way in
which they were derived. The relationship among amino acid
properties is inherently non-linear and a neural network is very
suitable for such a task and, in theory, it can grasp all of this kind
of relationships. This is why SOTA can successfully classify the
amino acids. We expect that the SOTA architecture can be used
for a whole host of classification tasks that extend beyond se-
quence comparison, and is an appealing alternative to traditional
clustering techniques when a complex and non-linear relation-
ship among data is to be analysed.
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