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Abstract Covarion processes allow changes in evolu-

tionary rates at sites along the branches of a phylogenetic

tree. Covarion-like evolution is increasingly recognized as

an important mode of protein evolution. Several recent

reports suggest that maximum likelihood estimation

employing covarion models may support different optimal

topologies than estimation using standard rates-across-sites

(RAS) models. However, it remains to be demonstrated

that ignoring covarion evolution will generally result in

topological misestimation. In this study we performed

analytical and theoretical studies of limiting distances

under the covarion model and four-taxon tree simulations

to investigate the extent to which the covarion process

impacts on phylogenetic estimation. In particular, we

assessed the limits of an RAS model-based maximum

likelihood method to recover the phylogenies when the

sequence data were simulated under the covarion pro-

cesses. We find that, when ignored, covarion processes can

induce systematic errors in phylogeny reconstruction.

Surprisingly, when sequences are evolved under a covarion

process but an RAS model is used for estimation, we find

that a long branch repel bias occurs.

Keywords Phylogeny estimation �Maximum likelihood �
Simulation � Bias � Covarion � Heterotachy � Inconsistency �
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Introduction

Phylogenetic inference with maximum likelihood (ML)

methods relies on the correct specification of the molecular

evolutionary process. Over the years, a variety of models of

nucleotide and amino acid substitutions has been proposed

to describe this process, including equal rates across sites

and lineages; rate variation across sites (Uzzell and Corbin

1971); the proportion and/or distribution of (in)variable

sites (Lockhart et al. 1998, 2000); rate variation across

lineages and subtrees, such as covarion models (Fitch and

Markowitz 1970) and heterotachy (Lopez et al. 2002);

compositional heterogeneity (Lockhart et al. 1994; Galtier

and Gouy 1995; Foster 2004); and site-heterogeneous

amino acid replacement (Lartillot and Philippe 2004; Pagel

and Meade 2004). Model misspecification is often cited as

one of the primary causes of incorrect topology estimation

by ML (Gaut and Lewis 1995; Lockhart et al. 1996, 2006;

Bruno and Halpern 1999; Inagaki et al. 2004) and may also

cause the method to become inconsistent (i.e., to converge

to an incorrect tree with increasing certainty as more

sequence data are used for estimation [Felsenstein 1978;

Huelsenbeck 1998; Susko et al. 2004]).

Rate variation across sites (RAS) can be modeled with a

discrete gamma distribution, which greatly improves the

performance of ML methods (Yang 1994). However, the

covarion model (and heterotachy in general) has recently

attracted increasing attention, due to interest in recon-

structing the deep structure of the tree of life. The covarion

evolutionary process holds that selective pressures on an
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amino acid or nucleotide site are dependent on the states of

other sites. As these states change over time, the evolutionary

rate at the site of interest also changes. The result is that along

the branches of a phylogenetic tree, the rates at different sites

may vary in different ways (Fitch and Markowitz 1970). In

the covarion hypothesis, characters in a DNA or protein

molecule are separable into variable and invariable classes,

and the memberships of these two classes change over time,

due to changes in functional and selective constraints (Fitch

1971). More specifically, the covarion model proposes the

existence of three different categories of sites: the covarion

pool of currently variable sites, the class of temporarily

invariable sites that are potentially to become variable, and

the class of permanently invariable sites (Fitch 1971; Mi-

yamoto and Fitch 1995). The first evidence of covarion-like

evolution was therefore based on detecting sites in homol-

ogous sequences that are invariable among taxa in one clade,

but variable among taxa in another clade (Fitch and

Markowitz 1970; Fitch 1971; Miyamoto and Fitch 1995; Gu,

1999; Gaucher et al. 2001; Pupko and Galtier 2002). This is

also the basis for several statistical tests used to detect co-

varions (Lockhart et al. 1998, 2000; Ané et al. 2005).

Inspired by these qualitative ideas, Tuffley and Steel

(1998) developed the first mathematical model of covarion

evolution (the TS model; see also Penny et al. 2001). They

hypothesized that the substitution process at a site can be

turned on (variable) or off (invariable). When a site is on it

evolves according to some substitution process and can be

modeled with a reversible substitution rate matrix. The

switching between on and off is modeled as an additional

stationary Markov process. Huelsenbeck (2002) imple-

mented a version of this model, with the addition of RAS,

under the Bayesian framework for phylogenetic inference.

Galtier (2001) developed a different covarion model with an

arbitrary number of rate classes. In his model, the overall

substitution rate multipliers are defined by a discrete gamma

distribution, similar to models of rate variation across sites,

except that sites may change rates. Rate switching is modeled

by a Poisson process. However, the Galtier model does not

allow rate switching to and from an invariable off state. We

recently proposed a general covarion model that not only

allows site rates to switch from on to off and from off to on,

but also allows switching between different rates among the

on states (Wang et al. 2007). Empirical studies on ribosomal

RNA genes, protein coding genes, and protein sequences

have demonstrated that the covarion models provided better

fits to the majority of the data sets than the RAS models that

do not allow rates at sites to change over time (Galtier 2001;

Huelsenbeck 2002; Wang et al. 2007). Furthermore, several

recent studies have shown that phylogenetic inference using

the covarion models can support different optimal topologies

from that using a model without covarions (e.g., the RAS

model) (Ruiz-Trillo et al. 2004; Shalchian-Tabrizi et al.

2006; Wang et al. 2007). However, it is not clear that failing

to account for covarion-like evolution will generally result in

topological misestimation and the inconsistency of the

phylogenetic methods.

In this study we performed analytical and theoretical

studies of limiting distances under the TS model (Tuffley

and Steel 1998) to investigate the extent to which the co-

varion process impacts on phylogenetic estimation. We

then did four-taxon tree simulations to assess the ability of

an RAS model-based ML method to recover the phyloge-

nies when the sequence data were simulated under the TS

model and the more complex general covarion model

(Wang et al. 2007), respectively. We compared the effects

of different sequence lengths and amino acid substitution

matrices on the simulation results.

Analytical Results

We start by considering results in an idealized four-taxon

setting: amino acid Jukes-Cantor (JC; 1969) distances with

the neighbor-joining algorithm for tree estimation. While

the setting is simplified to make analysis more tractable, we

show that similar behavior arises with more complex

substitution processes and the ML method. What we show

here is that distances that are uncorrected for RAS variation

will cause a long branch attraction (LBA) bias, while dis-

tances that are corrected for RAS will show a long branch

repel (LBR) bias.

Our approach is similar to that described by Susko et al.

(2004). With or without a gamma RAS adjustment, JC

distances between a pair of taxa, i and j, are a continuous

function of the proportion of sites with different amino

acids in the sequences, p̂ði;jÞ; we denote the distance

dij ¼ d ðp̂ði;jÞÞ. Since the proportion of sites with different

amino acids converges to the probability of different amino

acids for i and j at a site, p(i,j), we have that

dðp̂ði;jÞÞ ! d ðpði;jÞÞ

as the number of sites goes to infinity. It will be valuable to

think of incorrectly specified distances in terms of their

dependence on the true evolutionary distances. The prob-

ability of different amino acids at a site is dependent on the

pair, i and j, only through the true evolutionary distance, t,

between the pair: p(i,j) = w(t). Thus the limiting distance,

d(p(i,j)), is also a function g(t): = d(w(t)) of the true evo-

lutionary distance between the pair.

In the case of a four-taxon tree with taxa A, B, C, and D

there are three topologies which can be described in terms

of the neighbor of A: (A, B), (A, C), and (A, D). We assume

throughout that the true topology is (A, B). With b [ a in

Fig. 1, either the true tree will have long branches separate

(Fig. 1A), which we will an LB-separate tree, or the true
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tree will have long branches together (Fig. 1B), which we

call an LB-together tree. For a four-taxon tree the neighbor

joining algorithm can be shown (Saitou and Nei 1987) to

determine the estimated topology according to the fol-

lowing rules:

1. (A,B) is preferred to (A,D) if

dAD þ dBC � dCD � dAB [ 0 ð1Þ

2. (A,B) is preferred to (A,C) if

dAC þ dBD � dCD � dAB [ 0 ð2Þ

The limiting behavior differs depending on whether the

limiting distances, g(t), are concave functions of the true

distances, t, or not. We start by considering the case that

g(t) is concave and the generating tree has long branches

separate. As discussed by Susko et al. (2004), with a large

number of sites, (1) will for sure be satisfied so that the

estimated topology will be (A, B) or (A, C). Let b(a) be the

solution of

gð2bþ aÞ � 2gðaþ bÞ þ gð3aÞ ¼ 0 ð3Þ

Then, as discussed by Susko et al. (2004), with a large

number of sites, (2) will be satisfied, if and only if

b \ b(a). In other words, for b [ b(a), the tree with long

branches together, (A, C), will be estimated.

Consider now a generating JC amino acid model com-

bined with the covarion model described by Tuffley and

Steel (1998). The TS model assumes a Markov process for

rate switching along the edges of a phylogenetic tree. Rates

along an edge switch from an off state to an on state and

from on to off. The model has two parameters: s01 and s10,

the rate of transition from off to on and then the corre-

sponding rate from on to off, respectively.

Explicit mathematical equations for the relationships

between the limiting distance and the true distance (i.e., the

function g(t)) under the covarion model are complicated,

but they can be computed numerically. Figure 2A gives the

estimated limiting distances plotted against the true dis-

tances for various choices of s01 and s10 when JC distances

are used that make no adjustment for the TS model or even

RAS. The concave shapes of the plots indicate that an LBA

form of inconsistency will arise. The zones of inconsis-

tency (defined by the function b(a)) are given in Fig. 2B.

Values of b and a above and to the left of the lines cor-

respond to regions where the topology with long branches

together, the (A, C) topology, will be estimated. In some

respects, the results are not surprising. Tuffley and Steel

(1998) show that for a pair of taxa, the TS model is

A B

Fig. 1 The two types of four-taxon trees used for the analytical and

simulation studies. A Tree of the LB-separate type, which can induce

the LBA form of bias if the misestimated tree is an AC tree. It can

also induce an AD tree (not shown) which does not represent an LBA.

B Tree of the LB-together type, which may induce the AC and AD

trees, both of which are of the LBR form of bias

Fig. 2 Analytical results for a covarion generating process and equal

rates distance estimation. A The relationship between the limiting

estimated distances and the true distances. With the generating tree

that has long branches separate, the TS + JC model was the

generating process, but estimated distances are JC with no correction

for RAS or a covarion process. B The zones of inconsistency. Edge

lengths have been multiplied by s01/(s01 + s10) so that they are

interpretable as expected numbers of substitutions. All values of a and

b above and to the left of the boundary curves correspond to cases

where the tree with long branches together will be estimated with long

sequences
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indistinguishable from an RAS model and it is well known

that a failure to adjust for the RAS variation leads to LBA

(Huelsenbeck 1995; Kuhner and Felsenstein 1995; Susko

et al. 2004). For s10 = 0.001 and s01 = 0.1 the limiting

estimated distances are almost-linear functions of the true

evolutionary distances, giving an almost nonexistent zone

of inconsistency. This too is not surprising when one

considers that the proportion of time that the covarion

process is on, s01/(s01 + s10), is almost 1; at any given site it

is likely that there is little or no rate variation.

The case where the limiting distances are convex is

different. As discussed by Susko et al. (2004), in this case

with the generating tree that has long branches together, the

trees with long branches separate, (A, C) and (A, D), will be

estimated with probability approximately ½ each in the

zone of inconsistency. This zone corresponds to values of

b [ b(a) where b(a) is the solution of

2gðbþ 2aÞ � gð2aÞ � gð2bÞ ¼ 0 ð4Þ

Figure 3A plots the limiting distances against true

distances for a number of different choices of the a
parameter in gamma-corrected RAS distances. The other

parameters in the generating model were set to values

estimated in real data (the HSP90 data considered by Wang

et al. 2007): s01 = 0.61 and s10 = 0.53. With a small we see

highly convex g(t). In this case, with a generating LB-

together tree, the trees with long branches separate will be

estimated, resulting in an LBR form of inconsistency. The

zones of inconsistency are plotted in Fig. 3B, which shows

large zones when a is small. As a gets larger, the relationship

between estimated and true distances gets closer to linear,

with a corresponding small zone of inconsistency and, as

expected given the results illustrated in Fig. 2, with no RAS

variation (a ? ?), the relationship between estimated and

true distance is concave, with no corresponding LBR zone of

inconsistency, for the LB-together generating tree that has

long branches together. In this case, because the shape of the

curve is concave but close to linear, a small LBA zone of

inconsistency will result.

The situation in usual practice is more complex. ML

estimation is frequently used in practice rather than dis-

tance methods, empirical substitution models like the JTT

model (Jones et al. 1992) are used and the value of a is

estimated. Still, the results here suggest that in the common

setting where an RAS adjustment is made, the likely con-

sequence is an LBR form of bias. In the following sections

we investigate this further through simulation.

Simulations

A sequence simulator program (Seq-gen-aminocov), modi-

fied from Seq-gen (Ané et al 2005; Rambaut and Grassly

1997), was developed for various covarion models. It first

simulates switching between rate categories as a continuous-

time Markov process. It then rescales the edge lengths so that

the expected number of substitutions over the edge matches

the required value. Finally, it simulates amino acid substi-

tutions as another continuous-time Markov process, using

the rescaled edge lengths. The rescaling is done as follows.

For the TS and Huelsenbeck models, it divides the edge

length by the time spent in the on state (i.e., s01/(s01 + s10)).

For the Galtier model, there is no off state. The rates switch

among a set of equiprobable categories with mean of one

substitution per unit time. The expected number of substi-

tutions is thus unchanged. Therefore, no rescaling is

necessary. For the general model, sites with a fixed rate need

no rescaling. For covarion sites, the rescaling is done by

dividing by the time spent in the on state, in the same way as

in the TS and Huelsenbeck models. The source code of the

program is available at http://www.liv.ac.uk/*matts/.

The two types (LB-separate and LB-together) of four-

taxon trees (Fig. 1) were used to simulate protein sequence

data. The edge lengths a and b varied from 0.05, 0.3, 0.6,

0.9, ..., 2.4, 2.7, 3.0. In total there are 121 trees corre-

sponding to the various combinations of the a and b

Fig. 3 Analytical results for a covarion generating process and RAS

distance estimation. A The relationship between the limiting

estimated distances and the true distances. With the generating tree

that has long branches together, the JC + TS model (s01 = 0.61 and

s10 = 0.53) is the generating model, but estimated distances are

derived from the JC + C model for various choices of a fixed a shape

parameter. B The zones of inconsistency. Edge lengths have been

multiplied by s01/(s01 + s10) so that they are interpretable as expected

numbers of substitutions. All values of a and b above and to the left of

the boundary curves correspond to cases where a tree with long

branches separate will be estimated with long sequences
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settings. One hundred simulated data sets were generated

for each setting. Seq-gen-aminocov was then used to sim-

ulate amino acid sequence data under the given models and

trees. The simulated sequence lengths include 100, 459,

1000, 10,000, and 100,000 amino acids for different sim-

ulation experiments. The amino acid substitution models

include uniform rates (i.e., the JC amino acid exchange

matrix) and the JTT rate matrix. Three site-rate variation

models were used in this study: the RAS model, the TS

model, and the general covarion model. For the TS model

we simulated the sequences with s01 = 0.61 and s10 = 0.53,

which correspond to the equilibrium frequency of on sites

(p) = 0.53 and switching speed per substitution (m) = 0.57

in the Seq-gen-aminocov parameterization. The general

covarion model (Wang et al. 2007) combines the RAS

model with both the TS and the Galtier models, allowing

evolutionary rates of sequence sites not only to switch from

on to off and from off to on, as in the TS and Huelsenbeck

(2002) models, but also to switch among different on

states, as in the Galtier (2001) model. The general model

has three more parameters than the TS model, including the

rate of switching from one nonzero rate to another nonzero

rate (s11), the proportion of covarion sites (p) (1 – p is the

proportion of sites evolving according to noncovarion RAS

process), and the gamma shape parameter (a) for the RAS

process, in addition to s01 and s10.

Topology estimations were conducted with PAML ver-

sion 3.12 (Yang 1997) under a discrete gamma RAS model

and a uniform rate or with Tree-Puzzle version 5.2 (Schmidt

et al. 2002) under the RAS model and JTT rates. Heatmaps,

plotted with a script written in R (R Development Core Team

2007), were used to show the distribution of the estimated

optimal topologies for different a and b settings.

The Effect of the TS Covarion Model on Phylogenetic

Inference

Simulating Under the LB-Separate Tree

We simulated five data sets of different lengths (100, 459,

1000, 10,000, and 100,000 amino acids) under the TS

model and amino acid JC model. The covarion parameters

for the simulations were s01 = 0.61, s10 = 0.53. The esti-

mations were conducted with PAML under the RAS model

(with four gamma rate categories and allowing a to be

optimized), the JC rate, and allowing edge lengths to be

optimized. In this setting, the only ‘‘misspecification’’ of

the model is the TS versus RAS process.

The results indicate that when the sequence lengths are

very short (100 amino acids) quite a number of both AC

and AD trees are estimated (470 and 405, respectively, of

12,100 trees). As the length increases, the numbers of both

types of the misestimations decrease dramatically. For

instance, at the length of 1000 amino acids the numbers of

the misestimated AC and AD trees are only 12 and 41,

respectively, and they become virtually zero when the

lengths are 10,000 or 100,000 amino acids. It should be

mentioned that for the generating tree being of the LB-

separate form, the misestimated AC trees, but not the AD

trees, represent an LBA bias when a is small and b is much

greater than a (Fig. 1A). In order to see any estimation bias

in these a and b settings that can potentially induce LBA

artifacts, we computed average frequencies of the esti-

mated AB, AC and AD trees among the cells in the region

where [b [ a, a B 1.0] and their standard errors (Table 1).

For the frequency data in the defined region, the Monte

Carlo standard error of the proportion of the AB trees is

obtained as

1

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

a;bP̂
ða;bÞ
AB ð1� P̂

ða;bÞ
AB Þ

q

where c is the number of a, b settings, the sum is over all a,

b settings, and P̂
ða;bÞ
AB is the proportion of the AB trees in the

cell. The standard errors of the proportions of the AC and

AD trees were calculated in the same way.

Table 1 shows that even in this region where the LBA

artifact is potentially plausible, the proportions of the AC

trees are similar to or less than that of the AD trees and

both types of the misestimations decrease dramatically as

the simulated sequences get longer, and when the

sequences are over 10,000 amino acids there is no mises-

timation. Therefore, it appears there is an absence of LBA

bias for these simulation settings, i.e., data generated under

the TS model and estimated under the RAS model.

Table 1 Proportions ± standard errors of the estimated AB, AC, and AD trees in the regions of [b [ a, a B 1.0] for simulations under TS + JC

and estimation under RAS + JC for different lengths of the simulated sequences: simulating trees are of the LB-separate form

Sequence length Simulation model Estimation model AB tree AC tree AD tree

100 TS + JC RAS + JC 0.83 ± 0.006 0.09 ± 0.005 0.08 ± 0.004

459 TS + JC RAS + JC 0.95 ± 0.003 0.01 ± 0.002 0.04 ± 0.003

1000 TS + JC RAS + JC 0.98 ± 0.002 0.004 ± 0.001 0.01 ± 0.002

10,000 TS + JC RAS + JC 1.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

100,000 TS + JC RAS + JC 1.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
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Figure 4 shows three vertical panels of heatmaps that

represent, respectively, the proportions of the misestimated

AC and AD trees with regard to the edge lengths (a and b)

for sequence lengths of 100, 459, and 1000 amino acids,

respectively. The left two vertical maps are the distribution

of the proportions of the AD and the AC trees, respectively,

for the 100 amino acid data sets. Wrongly assigned AC and

AD trees are obtained for all values of a and for b [ 0.05,

indicating that stochastic error is prevalent for analyzing

the short sequences (especially in the cases where b is very

large or a is very small). The middle two vertical maps are

the distribution of the AD and AC trees for sequences of

459 amino acids. The misestimated optimal AC and AD

trees are only present in a = 0.05 and b [ 0.6. The right

two vertical maps show the distribution for the AD and AC

trees for the sequences of 1000 amino acids; the misesti-

mated optimal AC and AD trees are only present in

a = 0.05 and b [ 0.9. For length = 10,000 and 100,000

amino acids, misestimated optimal AD and AC trees are

present in only 1 simulation (a = 0.05 and b = 3.0) of a

total of 12,100 simulations (heatmaps not shown; see

Table 1).

The estimation of the tree topologies allowed the opti-

mization of the gamma shape parameter (a). Figure 5

shows a heatmap of the estimated a values averaged for

each cell of the estimated AB trees for sequence length of

1000 amino acids. This shows that a is small when both a

(\1.0) and b (\1.5) are small. The reason is likely that if an

edge is short, a site with a high rate at the start of the edge

will probably still have a high rate at the end of the edge.

Similarly, a low initial rate will also be maintained over a

short edge. Consequently, over a short time, the variance in

average rates across sites will be high, and a smaller a is

expected. Heatmaps of a for the other sequence lengths

(not shown) show a similar distribution of a, but the

average values are smaller as sequence lengths increase.

Simulating Under the LB-Together Tree

For the generating tree being LB-together and simulations

under the TS + JC model and estimated under the RAS +

JC model, the numbers of misestimated AC and AD trees

are much higher than for the simulations under the LB-

separate tree. For instance, at the length of 100,000 amino

acids the numbers of misestimated AC and AD trees for the

current simulations are 514 and 492, respectively. Table 2

shows the proportions and standard errors of the estimated

AB, AC, and AD trees for the current simulations (the

simulating trees being of the LB-together form) among

cells in the region where [b [ a, a B 1.0].

As shown in Fig. 1B, both misestimated AC and AD

trees represent the LBR bias for simulations under the LB-

together trees, which is supported by the comparable pro-

portions of the AC and AD trees within the same sequence

length settings (Table 2). Comparing Table 2 with Table 1

shows that the proportions of the AC and AD trees are

much higher in Table 2. It also indicates that the propor-

tions of the misestimated AC and AD trees, though

showing a slight decrease with sequence length, are not

Fig. 4 Heatmaps of the proportions of misestimated AC and AD

trees for different edge lengths a and b for simulations under LB-

separate trees and for sequence lengths of 100, 459, and 1000 amino

acids. Each vertical panel contains two heatmaps for the proportions

of the AD and AC trees, respectively

Fig. 5 Heatmap for the distribution of the estimated a shape

parameter for the estimated optimal AB trees for simulations under

LB-separate trees and a sequence length of 1000 amino acids
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much different across the different sequence lengths in

Table 2, in sharp contrast to the dramatic decrease in the

proportions of the misestimations shown in Table 1.

However, the proportion of the misestimations is an aver-

age over different edge length settings and its change with

increasing sequence lengths can be very different for par-

ticular edge length settings, which is revealed in the

following heatmaps.

Figure 6 shows heatmaps for the proportions of the

misestimated AC + AD trees with regard to a and b for the

simulations under different sequence lengths. The region

where poor estimation occurs gradually contracts as the

sequence length increases but the proportions of misesti-

mations increase to 1 in these regions. For instance, starting

with short sequences of 100 amino acids, wrongly assigned

AC and AD trees are distributed mainly in the region

composed of a \ 1.5 and b [ a. For length = 459 amino

acids, the distribution of AC + AD trees is more restricted

to the upper left corner. The region in which AC + AD

trees are estimated continues to shrink as sequence length

increases. When the sequence length is 100,000 amino

acids, AC and AD trees are only estimated in the region

where a = 0.05 or 0.3 and b [ 0.9. However, within these

regions, the frequency of misestimation increases with

increasing sequence length, approaching 100% when the

sequence length is 100,000.

For the simulated sequences of length = 1000 or 459

amino acids, the estimated average a parameters for the

estimated optimal AB trees are relatively small (mean

a\ 2.0) when a \ 1.0, but b can be up to 3.0. For short

sequences (sequence = 100 amino acids), a\ 2.0 only

occurs when a \ 0.6 and b \ 1.5. Within this range of a

and b settings, however, values of a[ 5 were still

estimated.

The above simulations examine bias in phylogenetic

inference for sequence data simulated under the TS

model + the JC rate and estimated under RAS + the JC

rate and demonstrated that the outcomes depend on the

types of the simulating trees. If the data are simulated

under the LB-separate trees, there is no LBA bias and the

misestimations due to stochastic errors will be reduced

with increasing sequence lengths and they essentially dis-

appear when the sequence length reaches 10,000 amino

acids. This suggests that data generated under a process

similar to the TS covarion model can be handled with an

RAS model for long sequences. However, if the data are

simulated under the LB-together trees, both AC and AD

trees when estimated represent LBR bias, and they sig-

nificantly persist even when the sequence length reaches

100,000 amino acids, suggesting that the covarion process

will likely cause an LBR bias of phylogenetic inference if

the RAS method is used for estimation.

Comparing the General Covarion and RAS Models

The foregoing analyses concerned estimation biases

incurred by the simplest covarion model, the TS process.

However, it is of interest to know whether these results

generalize to more complex models, such as the general

covarion process described by Wang et al. (2007). Four

simulation experiments were conducted: Simulations I and

II were performed over the LB-separate trees and

Table 2 Proportions ± standard errors of the estimated AB, AC, and AD trees in the regions of [b [ a, a B 1.0] for simulations under TS + JC

and estimation under RAS + JC for different lengths of the simulated sequences: simulating trees are of the LB-together form

Sequence length Simulation model Estimation model AB tree AC tree AD tree

100 TS + JC RAS + JC 0.66 ± 0.007 0.18 ± 0.006 0.16 ± 0.006

459 TS + JC RAS + JC 0.62 ± 0.007 0.20 ± 0.006 0.18 ± 0.006

1000 TS + JC RAS + JC 0.66 ± 0.005 0.17 ± 0.006 0.17 ± 0.006

10,000 TS + JC RAS + JC 0.69 ± 0.003 0.17 ± 0.005 0.14 ± 0.005

100,000 TS + JC RAS + JC 0.71 ± 0.001 0.15 ± 0.005 0.14 ± 0.005

Fig. 6 Heatmaps of the proportions of misestimated AC and AD

trees combined for different edge lengths a and b for simulations

under LB-together trees and sequence lengths of 100, 459, 1000,

10,000 and 100,000 amino acids, respectively
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Simulations III and IV were performed over the LB-toge-

ther trees. In all simulations sequence lengths were kept at

459 amino acids. The following four settings were used. (I)

Data were simulated under the RAS model with a = 0.8,

JTT + 4 C rates. For each tree, edge lengths a and b vary

from 0.05 to 3.0 and 100 data sets were simulated for each

setting. (II) Data were simulated under the general covarion

model. In addition to using the above parameters for the

RAS model, covarion parameters also included a propor-

tion of covarion sites (p) = 0.71, and switching rates of

s01 = 0.43, s10 = 0.57, s11 = 0.97. These parameter settings

were based on the optimized result for a HSP90 data set

that was previously used for testing the covarion models

(Wang et al. 2007). (III) The sequences were generated

under the RAS model. The simulation conditions are the

same as Simulation I except that the LB-together trees were

used. (IV) The sequences were generated under the general

covarion model. The simulation conditions are the same as

Simulation II except that the LB-together trees were used.

Tree-Puzzle was used to estimate the topologies and

compute the ML scores for the data sets, with the JTT + C
model (four rates) and allowing a and edge length opti-

mization. The simulation and estimation conditions are

summarized in Table 3. Since the estimated wrong trees

(i.e., the AC and AD trees) are restricted to the region

where [b [ a, a B 1.0], we computed average frequencies

of AB, AC, and AD trees among cells in this region and

their standard errors (Table 3). When the generating tree is

of the LB-separate form and the RAS model is used to

generate and estimate the data (setting I), the proportions of

AC and AD trees recovered are both small and not sig-

nificantly different from one another. By contrast, for data

set II, where data are simulated under the general covarion

model and the same type of the generating trees, the pro-

portion of the estimated AD tree is significantly greater

than that of the AC trees. As mentioned above, only the

misestimated AC trees represent LBA bias for the gener-

ating trees being of the LB-separate form. For data sets III

and IV, however, since the generating trees are of the LB-

together form, both the misestimated AC and AD trees

represent LBR. Table 3 and Fig. 7 show that both the

proportions of AC and AD trees are significantly increased

in data set IV (simulated under the general model) com-

pared to data set III (simulated under the RAS model). In

summary, the general covarion model and estimating trees

with an RAS model significantly increased LBR bias

compared with the RAS model simulations.

Furthermore, we also simulated sequence data under the

TS + JTT models and estimated under the RAS + JTT

models for both the LB-separate and the LB-together trees.

The results (not shown) again demonstrate that sequence

data simulated under the covarion model and estimated

under the RAS model cause an LBR bias.

Table 3 Proportions ± standard errors of the estimated AB, AC, and AD trees in the regions of [b C a, a B 1.0] for the four simulation

experiments indicated in the text: sequences are all 459 amino acids long in these simulations

Data set Simulation model Estimation model AB tree AC tree AD tree

Ia RAS + JTT RAS + JTT 0.96 ± 0.003 0.03 ± 0.002 0.02 ± 0.002

IIa General + JTT RAS + JTT 0.95 ± 0.005 0.01 ± 0.002 0.04 ± 0.004

IIIb RAS + JTT RAS + JTT 0.76 ± 0.008 0.12 ± 0.007 0.12 ± 0.007

IVb General + JTT RAS + JTT 0.54 ± 0.008 0.22 ± 0.008 0.24 ± 0.008

a The simulating tree is of the LB-separate form
b The simulating tree is of the LB-together form

Fig. 7 Heatmaps of the proportions of misestimated AC and AD

trees for different edge lengths a and b for simulations under the LB-

separate trees (LB-S; the bottom panel for the proportion of the AC

trees only; the middle panel for the proportions of the AC and AD

trees combined) and under the LB-together trees (LB-T; the top

panel for the proportions of the AC and AD trees combined). Data

sets I, II, III, and IV are defined as in Table 3. For each horizontal

panel, the left map shows the data that were simulated under the

RAS + JTT models and the right map shows the data that were

simulated under the general covarion + JTT models. The sequence

lengths for all simulations were maintained at 459 amino acids. The

estimations of the topologies were done using Tree-Puzzle with

RAS + JTT models with four gamma rate categories
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Does a Covarion Model Perform Better Than the RAS

Model?

The above simulations evaluate the performance of the ML

tree estimation with an RAS model when the data are

simulated under covarion models, which show that an LBR

bias persists when the data are simulated under the LB-

together trees. It will be interesting to see whether this

problem can be relieved if a covarion model is used for tree

estimation. It is also of interest to know the effect of tree

estimation with a covarion modeling for data simulated

under an RAS process. Several software packages,

including NHML, MrBayes, and Procov, are now available

for implementing the covarion process in phylogenetic

reconstruction methods (Galtier 2001; Huelsenbeck 2002;

Wang et al. 2007). While a complete evaluation of the

covarion methods on tree estimation is beyond the scope of

this paper, we used Procov with the general covarion model

to analyze the four data sets (459 amino acids long and 100

replicates for each data set) described in Table 3. The

numbers of correctly estimated and misestimated trees (i.e.,

AB trees and AC + AD trees) are shown in Table 4. It also

lists the corresponding numbers of the AB trees and

AC + AD trees estimated with the RAS model and the p-

values for v2 tests of the three 2 9 2 contingency tables.

The results show that both the RAS and the general co-

varion models perform well for data simulated under the

LB-separate trees. The slight increases in the numbers of

the AC + AD trees in the covarion estimations can be

explained by the large variances in parameter estimations

under the general covarion model, which has four more

parameters than the RAS model, especially when the

sequences are relatively short (459 amino acids in these

data). For data simulated under the LB-together trees, there

is no significant difference between the uses of the RAS

and covarion models for estimating the topology when the

data are simulated under the RAS. However, there is a

significant improvement using the covarion model, over the

RAS model, for tree estimation when the data are simu-

lated under the covarion model. Therefore, the use of the

covarion model effectively reduces the LBR bias.

Discussion

Simulated four-taxon datasets have been widely used to

produce controlled simulation of evolutionary processes

and evaluate the success rate of different methods for

recovering phylogenetic trees (Felsenstein 1978; Huelsen-

beck 1995, 1998; Gaut and Lewis 1995; Chang 1996;

Siddall 1998; Bruno and Halpern 1999; Swofford et al.

2001; Susko et al. 2004). These previous simulation studies

sometimes focused on model misspecification in the RAS

model and the relative performances of the maximum

parsimony (MP) and ML methods, which have successfully

identified model misspecification and particular edge

length setting that may cause LBA (‘‘Felsenstein zone’’)

and LBR (‘‘Farris zone’’) biases. More recently, the studies

have shifted to simulate more heterogeneous evolutionary

processes, the heterotachous rate variation across sites and

lineages (Kolaczkowski and Thornton 2004; Ruano-Rubio

and Fares 2007), and the resulting estimation bias for ML.

The Kolaczkowski and Thornton study has generated

renewed debate about whether the MP or ML methods

should be preferred for data that evolved under a hetero-

tachous process (Spencer et al. 2005; Gadagkar and Kumar

2005; Gaucher and Miyamoto 2005; Steel 2005; Philippe

et al. 2005).

In this study we investigated the impact of data gener-

ated under the standard covarion process on phylogenetic

estimation with widely used methods: the equal rates and

RAS models. From both our analytical studies and the

Table 4 Numbers of estimated AB and AC + AD trees for the four simulated data sets indicated in Table 3

Data set Simulation model Estimation model No. AB trees No. AC + AD trees p-value

Ia RAS + JTT RAS + JTT 11,929 171 0.0011

I RAS + JTT General + JTT 11,864 236

IIa General + JTT RAS + JTT 11,989 111 0.002

II General + JTT General + JTT 11,928 172

IIIb RAS + JTT RAS + JTT 11,572 528 0.35

III RAS + JTT General + JTT 11,542 558

IVb General + JTT RAS + JTT 11,048 1052 \0.0001

IV General + JTT General + JTT 11,459 641

Note. For each data set of 12,100 alignments, tree estimations were done with the RAS and general covarion models, respectively and a p-value

was derived from a v2 test of the 2 9 2 contingency table
a The simulating tree is of the LB-separate form
b The simulating tree is of the LB-together form
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simulations we see that, depending on the types of the

simulating tree and the phylogenetic model used for esti-

mation, the bias could be LBA or LBR. For sequence data

simulated under the LB-separate trees and the TS model,

the analytical results indicate that the neighbor-joining

algorithm-based distance method for tree estimation will

cause an LBA form of inconsistency if a uniform amino

acid exchange rate model is used for estimation. The zone

of inconsistency varies with the relative rates of s10 and s01

(Fig. 2B). The simulations show that using ML with RAS

adjustment for tree estimation will cause some misesti-

mations, but no apparent LBA bias. Moreover, increasing

sequence length will effectively reduce the misestimations,

indicating that the RAS method will be consistent under

these settings. This supports the argument that part of the

covarion process may be accounted for by an overall RAS-

like heterogeneity, as every site relative rate would depend

on the time interval it has spent in the on state: the longer

the time, the higher the rate (Ruano-Rubio and Fares 2007).

For sequence data simulated under the LB-together tree

and estimated with an RAS-based ML method, the LBR

bias will persist even when very long sequences are used,

indicating inconsistency under these settings. The analyti-

cal results show that for the generating tree being of the

LB-together form, the limiting distance is a convex func-

tion of the true distance for the generated sequences

(Fig. 3A) and the zone of inconsistency of the ML esti-

mation depends on the a parameter used for the RAS

adjustment (Fig. 3B). Therefore, although the covarion

process could cause LBA bias when using an equal-rates

model to estimate, an LBR bias is much more of a concern

and results in estimation under the RAS model to be

inconsistent. It has been noticed elsewhere that covarion-

type evolution is not always well explained by the RAS

models (Lockhart et al. 1998; Ané et al. 2005).

Phylogeneticists are accustomed to being concerned

about LBA bias when an estimated tree contains LB-toge-

ther. We see here that LB-apart in an estimated tree can be of

concern as well. This study has found no evidence of LBA

bias but rather a substantial LBR bias when ML estimation

under an RAS model is used but the generating model is a

covarion model. Furthermore, we found that using a phylo-

genetic method that implements covarion models can

effectively reduce the LBR bias. If the data under exami-

nation show evidence of covarion-like evolution, as is often

the cases in the inference of deep phylogenies (Inagaki et al.

2004; Lockhart et al. 1998; Ané et al. 2005), it would be

advisable to use a covarion model, in addition to the tradi-

tional RAS models, to infer phylogenies.
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