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Abstract The strength and direction of selection on the

identity of an amino acid residue in a protein is typically

measured by the ratio of the rate of non-synonymous

substitutions to the rate of synonymous substitutions. In

attempting to predict positively selected sites from amino

acid alignments, we made the unexpected observation that

the site likelihood of an alignment column for a given tree

tends to be negatively correlated with the posterior prob-

ability that site is in the positive selection class under

widely-used codon models. This is likely because posi-

tively selected sites tend to be more variable and display

more ‘‘radical’’ amino acid changes; both of these features

are expected to result in low site log-likelihoods. We

explored the efficacy of using the site log-likelihood (SLL)

score as a predictor for positive selection. Through simu-

lation we show that a SLL-based test has a low false

positive rate and comparable power as the codon models.

In one case where the simulated data violated the

assumption that synonymous substitution rates were con-

stant across the sites, the codon models were not able to

detect positive selection in the data while the SLL test did.

We applied the new method to ten empirical datasets and

found that it made similar predictions as the codon models

in eight of them. For the tax gene dataset the SLL test

seemed to produce more reasonable results. The SLL

methods are a valuable complement to codon models,

especially for some cases where the assumptions of codon

models are likely violated.
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Introduction

The inference of codons under positive selection from a

protein-coding sequence alignment has traditionally

involved estimating the ratio of non-synonymous substi-

tutions rates (dN) versus synonymous substitutions rates

(dS) at a site. The ratio of dN/dS, commonly denoted as x
being greater than, equal to, or less than 1 indicates the

gene is under adaptive (positive), neutral mutation or

purifying (negative) selection, respectively. Many statisti-

cal methods have been developed to infer positive selection

from protein-coding DNA sequences and identify these

sites by comparing the dS and dN along the codon

sequences (Yang 2006). The most sophisticated of these

are the random effects codon models, which assume a

discretized distribution of the x’s across the codon sites

and infer the most probable x class at this site given this

distribution under a maximum likelihood/empirical Bayes

framework (Anisimova and Kosiol 2009).

There are more than a dozen models that employ these

kinds of x distributions and many of these have been
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implemented in the phylogenetic analysis by maximum

likelihood (PAML) package, a commonly used software

tool for detecting positive selection (Yang 2007). One of

the assumptions of all of these models is that the synony-

mous substitution rates are constant across sites and only

the variation of the non-synonymous substitution rates

among sites is modeled through variation in x. However, it

should be noted that this is not a realistic assumption for

many protein-coding genes. For example it is well-known

that in bacteria and some eukaryotes such as yeast and

Drosophila synonymous codon usage in highly expressed

genes is biased toward those codons that have the most

abundant corresponding tRNA in the cell to maximize

growth rates (Ikemura 1985; Sharp and Li 1987), indicating

that synonymous mutations in these organisms are not

neutral and that the rate of their fixation varies over loci. In

addition, Hurst and Pal (2001) give an example involving

BRCA1 where variation in the dN/dS ratio over sites is

largely due to variation in the synonymous rates. Such

cases can create difficulties for codon models as it was

recently shown in Rubinstein et al. (2011) that variation in

the rates of synonymous substitutions can inflate false

positive rates (FP).

Furthermore, the estimation of the ratio of dN/dS

requires that the sequences in comparison cannot be too

close or too divergent (Yang and dos Reis 2011). When the

sequences are too divergent, synonymous substitutions

reach saturation and dS may be underestimated, which may

inflate the x ratio. High sequence divergence can cause

other problems, such as differences in codon usage

between the species or errors in the alignment, which may

lead to false prediction of positive selection (Yang and dos

Reis 2011; Privman et al. 2012; Jordan and Goldman

2012). When the sequences are too similar, the numbers of

synonymous and non-synonymous substitutions will be

insufficient for reliable estimation of the model parameters

and thus reduce the power for detecting positive selection

(Nozawa et al. 2009; Nickel et al. 2008), or conversely it

may lead to an elevated false positive prediction rate in

extremely sparse data sets (Suzuki and Nei 2004; but see

also Yang et al. 2005). Furthermore, codon models simply

cannot be validly applied to some kinds of data sets, such

as those that include a mixture of sequences from organ-

isms (or organelles) with differing genetic codes (Knight

et al. 2001).

In light of these issues, several workers have proposed

methods for detecting positive selection independent of x
(Tang and Wu 2006; Hanada et al. 2007; Shapiro and Alm

2009; Zhou et al. 2010). For example, the study by Shapiro

and Alm proposed using the ratio of substitutions in slow-

versus fast-evolving sites (S/F) to quantify variation in

natural selection on specific branches compared to the

typical pattern of selective constraint observed across

species in the phylogeny. This S/F ratio relies on empirical

definitions of ‘‘slow’’ and ‘‘fast’’ sites rather than prede-

fined synonymous and non-synonymous sites so that the

new test can work on amino acid sequences alone or on

anciently divergent codon sequences for which x-based

methods are not applicable due to synonymous substitu-

tions being saturated with multiple substitutions.

It has been shown that sites under positive selection are

often unusually variable on the amino acid level and fre-

quently display functionally/structurally ‘‘radical’’ amino

acid changes (Hughes and Hughes 1993; Zhang 2000;

Pupko et al. 2003; Hanada et al. 2007). We noticed that

these sites also tend to have much lower site log-likelihood

scores than sites that are classified as being under purifying

selection (x \ 1) or neutral evolution (x = 1). Indeed, we

find that there is a strong negative correlation between

amino acid site log-likelihood scores (lnL) and two indi-

cators for selective strengths in simulated data: the esti-

mated x values of the codon sites and the Bayes posterior

probabilities of sites being in a positive selection class.

This property allows the development of methods based on

the site lnL score in amino acid alignments to predict the

protein families under positive selection as well as identify

positively selected sites. Using simulations we show these

methods have very low FP and reasonable power in pre-

dicting positive selection at the gene level if the sequences

are not too divergent or too similar. We also find that in

simulations based on codon models that are different from

the codon models used in estimation, the site-likelihood

based methods have power to detect positive selection in

contrast to some standard codon models that have little or

no power under these conditions. Finally, we test the new

methods on ten empirical datasets and show that identical

predictions to those of codon models are obtained for eight

data sets on the gene level and most of the same sites are

identified as positively selected. However, for one of the

datasets previously suggested to confound inferences of

positive selection using codon site models (Suzuki and Nei

2004), the site-wise likelihood prediction method appeared

to give more reasonable predictions than standard codon

models.

Methods

Site-Wise Amino Acid Log-Likelihood (SLL)

and Thresholds for Declaring a Site Positively Selected

and Gene-Wise Testing of Positive Selection

For a dataset of codon sequences, simulated or empirical,

we first fit parameters on a phylogenetic tree and obtained

the amino acid site log-likelihoods under a standard amino

acid substitution model such as the WAG ? F ? U model
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for the translated amino acid sequences. We then use

simulation under an appropriate null model to determine a

site likelihood threshold below which we declare a site

positively selected. Fixing the tree topology as inferred

from the amino acid sequences, we estimate the codon data

under a M8A codon model (Swanson et al. 2003) with

equal codon frequencies (every codon has a frequency

of 1/61) to get estimates of the model parameters, using

Codeml in the PAML package (Yang 2007). Parameters

include edge-lengths, j, the differing x parameters for the

different site classes and associated weights or probabilities

of a site being in these classes. Since the M8A model

assumes x at a site comes from a mixture of a discrete

version of the two-parameter beta-distribution (x\ 1) and

a point mass at x = 1, no positive selection is allowed.

Using the M8A tree, estimated parameters and codon fre-

quencies we simulate a dataset of 20,000 codon sites under

M8A and analyze it under the WAG ? F ? U model for

the translated amino acid sequences to get a null distribu-

tion of amino acid site log-likelihoods under no positive

selection. The bottom 5th percentile of the 20,000 amino

acid site log-likelihoods was used as a critical value, i.e., if

a site in the original data has a log-likelihood lower than

this value, then it is identified as a putative ‘‘positive’’ site.

Site likelihoods are most naturally used to locate sites

that are under positive selection. However, in many

applications (e.g., where many gene families are being

examined at once), a test of whether a gene, as a whole, is

under selection is also desired. Given any site-wise test

with a false-positive rate of a, the expected proportion of

sites declared positive is a if the gene is not under selec-

tion, and this expected proportion is larger than a if the

gene is under selection. Thus, if the site-wise tests are

independent, a one-sided binomial test provides a general

way of constructing a gene-wise test from a site-wise test.

(In our case the site-wise tests are not independent because

all sites are used to obtain the parameter estimates used to

obtain the site likelihoods, but this is a relatively small

departure from independence.) Specifically, defining h to

be the proportion of the putative positively selected sites

found in the original data, if the site-wise test is an a-level

test, the gene is declared to be under positive selection if h
greater than hc at a certain a level.

hc ¼ aþ Za0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

að1� aÞ
n

r

ð1Þ

where n is the number of the codon sites in the original

data. Here a and a0 are typically set to 0.05 giving

Za0 = 1.645. The gene-wise test then has a FP of a0.
A subtly different issue in declaring a site positively

selected is to adjust for the multiple tests or selection bias:

although it is relatively rare that the p value for a randomly

selected site, not under selection, will be \0.05, it is not

unlikely that the smaller p values among n independent

p values will be \0.05. A general approach to correcting

for this selection bias was provided by Benjamini and

Hochberg (1995). The procedure declares sites corre-

sponding to the k smallest p values to be positively selected

when the rth of these is\ra/n, r = 1,…, k but the k ? 1st

is larger than (k ? 1)a/n; no site is declared positively

selected if the smallest p value is larger than a/n. The

Benjamini–Hochberg criterion has the property that the

overall probability is a that at least one site is falsely

declared positive. It complements the uncorrected site-wise

test which has false positive probability a for any particular

site but is likely to give at least one false positive for a

large gene.

Simes (1986) describes a variation of the Benjamini and

Hochberg criterion intended as an overall test rather than a

multiple comparisons adjustment for tests at sites. It has

been used previously to create gene-wise tests from site-

wise ones in Wong et al. (2004). The procedure declares the

gene to be under selection if the rth smallest p-value is

smaller than ra/n. Since the Benjamini–Hochberg procedure

will not declare any sites positively selected if the smallest

p-value is not smaller than a/n, the Simes test, while similar,

may declare a gene to show evidence of selection even

though no sites are found significant. Such a situation may

arise, for instance, if no single site is very strongly selected

for. As a gene-wise test, the Simes test complements the

binomial test, as it is good at detecting a small subset of sites

are under selection but requires that the signal for selection

be strong. By contrast, the binomial test can detect that weak

selection is taking place if it occurs at a sufficient number of

sites. As the two tests differ in their relative strengths at

detecting different types of gene-wise selection patterns,

gene-wise predictions made under the two methods can be

combined to increase the power of the tests, which we refer

collectively as a SLL test.

Prediction of Genes under Positive Selection: Type I

Error Rates and the Power

To investigate the Type 1 error (false positive) rates of the

SLL methods, we used INDELIBLE (Fletcher and Yang

2009) under the codon M0 model to simulate 200 datasets

each with 300 codons under a neutral model of evolution

(x = 1 for all sites) for an equal codon frequency (all 1/61),

under a symmetric bifurcating tree of 32 tips with the same

branch lengths (all 0.1). These settings were first used in

Suzuki and Nei (2002) who claimed they were difficult for

the codon models because they induce high rates of false

positives. The same tree and setting were also used in sub-

sequent reports for comparing the FP of the codon models in

detecting positive selection (Wong et al. 2004; Massingham

and Goldman 2005; Pond and Frost 2005). For each
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simulated dataset, we used the SLL approach to determine

the number of wrongly assigned positive sites and compare

their proportion (h) with a critical hc (=0.071 for n = 300 and

a = 0.05 based on Eq. 1) to decide if the null model of

neutral evolution was rejected and the dataset was falsely

inferred as positively selected. Simultaneously we applied

the Simes test to the simulated datasets to find FP under its

criterion. As a comparison, for the 200 simulated datasets we

used two commonly used likelihood ratio tests (LRT) to

determine FP from the codon models: M8 versus M7 (Yang

et al. 2000a, b) and M8 versus M8A (Swanson et al. 2003).

For the M8 ? M7 pair test we compared the LRT statistic

(twice of the log-likelihood difference between the two

models) with v2
2; 0:05 ¼ 5:991. For the M8 ? M8A pair test,

there are two v2 thresholds, one is based on a 1=2v2
0 þ1=2 v2

1

mixture with a critical value of 2.71 (Swanson et al. 2003)

and another is the more conservative v2
1 ;0:05 with a critical

value of 3.84 (Wong et al. 2004). From the M8 estimation

results, the numbers of the falsely assigned positive sites with

the naı̈ve empirical Bayes (NEB) and the Bayes empirical

Bayes (BEB) probabilities (Yang et al. 2005), both[95 %,

were recorded separately.

After showing the type 1 error rates for both gene-wise and

site-wise tests are close to the nominal 0.05, we further studied

the power of the SLL tests. The simulations for the power

analyses were based on an abalone sperm lysin gene tree

(Fig. 1 in Yang et al. 2000b). The original abalone lysin data

had 25 taxa and 135 codon sites and was shown to be under

positive selection with various codon sites models (Yang et al.

2000b). For example, analyzed under the discrete M3 model

with F3 9 4 codon frequencies, we obtained the following

model parameters: the transition to transversion ratio param-

eter j = 1.5761; selection class 1 (x1) = 0.08519 with

weight p1 = 0.32902; selection class 2 (x2) = 0. 9112 with

weight p2 = 0.40231; and selection class 3 (x3) = 3.06543

with weight p3 = 0.26868. These parameter estimates were

used for the following simulations and the three x’s corre-

sponded to strong purifying selection, weak purifying or

nearly-neutral case and strong positive selection respectively,

which made it an ideal case to study the power of relevant

methods for detecting positive selection. Based on the codon

frequencies under the F3 9 4 model, j and the lysin tree we

simulated the following six cases of positive selection:

Case 1: Simulations employed the M3 model with the

same three omegas (x) and their weight parameters

(p) estimated as above.

Case 2: Simulations employed the M3 model with the x
and p parameters as above, but the branch lengths of the

tree were increased by 10-fold. This setting was used to

evaluate the performance of the methods on data that

were potentially saturated with multiple substitutions.

Case 3: Simulations employed the M3 model with the x
and p parameters as above but the branch lengths of the

tree were decreased by 10-fold. This setting generates

data sets with little variation among sequences.

Case 4: Simulations employed the M3 model with a very

‘‘weak’’ positive selection regime of: x1 = 0.08519,

p1 = 0.32902; x2 = 0. 9112, p2 = 0.621; x3 = 1.5,

p3 = 0.05. Here both x3 and its weight were smaller

than in Case 1. All other parameters were as described in

the first case.

Case 5: Simulations employed the M3 model with a

relatively ‘‘weak’’ positive selection regime of: x1 =

0.08519, p1 = 0.32902; x2 = 0. 9112, p2 = 0.40231;

x3 = 1.5, p3 = 0.26868. The difference between this

case and Case 4 is that the proportion of the x3 is much

bigger in this case.

Case 6: Simulations generated three separate datasets

each under a different M0 model with the following x’s:

0.08519; 0. 9112 and 3.06543, respectively, and the

numbers of the sites in the three sets followed the same

proportions of the three classes as in Case 1. The three

datasets were then concatenated into one dataset. This

situation, unlike the foregoing scenarios, allows the rate of

synonymous substitution to be uncoupled and different

across the three partitions of the dataset. Specifically, the

expected numbers of synonymous substitutions per unit

edge length for the simulated datasets of the three x
classes are 0.79, 0.26, and 0.09, respectively; the corre-

sponding expected numbers of non-synonymous substi-

tutions per unit edge length are 0.21, 0.74, and 0.91,

respectively. This mimics the situations where the synon-

ymous substitutions may not be strictly neutral and differ

in rates across loci due to factors such as translational

selection on highly expressed genes (e.g., Ikemura 1985).

For each of the six simulation scenarios, 100 replicates

of simulated data with 200 codon sites were generated with

INDELIBLE. The SLL tests were applied to the datasets to

determine the number of the sets predicted to be positively

selected and the predicted positive sites were recorded. For

comparison, two pairs of LRTs (M8 ? M7 and

M8 ? M8A) were used to determine the power of the

standard codon models. For the analyses under the codon

models, Codeml (PAML version 4.2b; Yang 2007) was

used with the F3 9 4 codon frequency model and fixed the

tree topology as the lysin tree used in generating the data.

For the SLL method the codon sequence data were trans-

lated into amino acids and analyzed with Codeml under a

standard amino acid model with four discrete Gamma rates

(WAG ? F ? U) and fixing the tree topology as the lysin

tree and allowing branch lengths optimized. Since Codeml

did not directly give the amino acid log-likelihood at each
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site but listed the log-likelihoods of the site patterns, we

wrote a script to get the site-wise lnL’s based on the site

patterns.

Prediction of Sites under Positive Selection

For the SLL method, a site is considered to be under

positive selection if its amino acid log-likelihood is smaller

than the 5th percentile of the null log likelihood distribu-

tion for the 20,000 amino acid sites simulated under M8A.

For codon models allowing a positive selection class (e.g.,

M3 and M8), positive sites are predicted based on the

estimated empirical Bayesian posterior probabilities that a

site belongs to a positive selection class (x [ 1). Typically

a site with a posterior probability of [0.5 (or more strin-

gently 0.95) in an x [ 1 class is assumed positively

selected (Yang et al. 2000a, b). The posterior probabilities

calculated under M3 are NEB that treat the estimated x as

fixed for each site and do not account for sampling errors in

the maximum likelihood estimations of the model param-

eters. This may cause unreliable posterior probability cal-

culations (Yang et al. 2005). The M8 model calculates, in

addition to the NEB probabilities, the BEB of the sites, a

generally more reliable method for determining sites under

positive selection (Yang et al. 2005). For each simulated

dataset in the six simulation cases, we predicted positively

selected sites under the SLL test and under the M3 model

for the NEB probabilities and the M8 model for both NEB

and BEB probabilities (the BEB probabilities under M3 are

not available for the PAML version we used).

To fairly compare the power of different methods for the

same set of simulation parameters, their respective false-

positive rates should be same. This poses a problem when

comparing the SLL test with the codon models in detecting

positively selected sites. The p-values of the SLL tests are

based on a null distribution of strict neutrality (x = 1) that is

the hardest case to distinguish from positive selection and

thus is an upper bound on the p-value that one might obtain

under the null hypothesis. Codon models produce Bayesian

posterior probabilities and the rule that declares positives

when posteriors are larger than 95 % need not have a 5 % FP

(Massingham and Goldman 2005). The receiver operator

characteristic (ROC) analysis avoids the difficulties of

comparing the proportions of correctly predicted positive

A B

C D

Fig. 1 a and b: six box plots showing the distributions, for the three x
classes, of site log-likelihoods from a dataset simulated under M3, with

(a) being the codon site log-likelihoods estimated under M3 and

(b) being the amino acid site log-likelihoods estimated under

WAG ? F ? U for the translated amino acid data. c and d Two scatter

plots showing the correlations between the posterior probabilities of the

sites being in a positive selection class estimated under M3 and the site

log-likelihoods, with (c) being the codon site log-likelihoods estimated

under M3 and (d) being the amino acid site log-likelihoods estimated

under WAG ? F ? U for the translated amino acid data

284 J Mol Evol (2013) 76:280–294
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sites for methods with different FP. This analysis, presented

as a ROC curve, plots the true positive rates (TP) against FP

(Green and Swets 1966) thus allowing comparison of TP at

any given fixed FP. For the six cases in the power analyses

simulated with INDELIBLE, we knew which sites were true

positives as INDELIBLE assigned each site to a rate class

corresponding to a given x class. ROC curves were plotted

for the following four predictors: the SLL; the NEB posterior

probabilities under M3; the NEB probabilities under M8; and

the BEB probabilities under M8. As the FP rates take on a

discrete set of values that depends on the number of sites

under selection which varies from data set to data set, the TP

rates cannot be directly summed to get a set of mean TP rates

for plotting an average ROC curve for each simulation case.

To obtain the TP rates at the same set of FP rates for each data

set in a simulation case, we applied a smooth spline function

available as part of the R statistical programing environment

(R Development Core Team, 2008). Average ROC curves

over 100 data replicates are reported in each case.

Empirical Case Studies

We analyzed ten empirical datasets previously studied for

positive selection, including the abalone sperm lysin gene

(Yang et al. 2000a), the tax gene of a human T cell lym-

photropic virus (Suzuki and Nei 2004), Drosophila alcohol

dehydrogenase (ADH), Flavivirus E-glycoprotein, Flavi-

virus NS-5, the vertebrate b–globin, Japanese encephalitis

env and three HIV-1 genes (pol, vif and env V3 region).

The last eight datasets were among the ten datasets previ-

ously analyzed in Yang et al. (2000a, b) and downloaded

from http://abacus.gene.ucl.ac.uk/ziheng/data.html; the

other two datasets were not available from the web source.

We used the SLL method to analyze the ten datasets with

the trees previously built by the original authors with the

branch lengths optimized. We also reanalyzed the data

using three codon models (M7, M8, and M8A), although

they were previously tested with various codon models

(except M8A) in the original publications.

Results

Correlation Between Site Likelihood Score

and Selective Strength

To explore the correlation between the site likelihood score

and the selective strength (measured as x), we simulated a

dataset of 200 codon sites under the M3 model with three x
classes (x = 0.0852, 0.9112, and 3.06543, respectively)

based on a 25-taxa lysin tree. Figure 1 top panel shows six

box plots of the site log-likelihoods for the three classes of

sites estimated under M3 (Fig. 1a) and the corresponding

amino acid data analyzed under WAG ? F ? U (Fig. 1b).

It indicates, for both the codon data and amino acid data,

that sites under strong purifying selection (the first group:

x = 0.0852) have the highest site likelihoods; sites under

strong positive selection (the third group: x = 3.06543)

have the lowest site likelihoods; sites under weak purifying

selection (the second group: x = 0.9112) tend to have site

likelihoods in between the two other classes. Regardless of

whether amino acid or codon site likelihoods were con-

sidered, two-group t tests for a difference in mean site log

likelihoods were very significant for any pairwise com-

parison of the x classes (p \ 2.2 9 10-16). Similar pat-

terns as in Fig. 1a and b emerged when the codon site log-

likelihoods were estimated under the M0 and M8 models

and the amino acid site log-likelihoods were estimated

under the equal rates (WAG ? F) model (data not shown).

The bottom panel of Fig. 1 shows two scatter plots of

the NEB probabilities estimated under M3 against the

codon site log-likelihoods (Fig. 1c) and the amino acid site

log-likelihoods under discrete Gamma model (Fig. 1d) for

this data set. The two figures are very similar and present

curves that look like the letter Z, as the posterior proba-

bilities are bounded by 0 and 1, whereas site log-likeli-

hoods are only bounded at 0. It is clear that sites with the

lowest lnL have the highest posterior probabilities of

positive selection and those with the highest lnL have the

lowest posterior probabilities. Similar curves appeared

when the posterior probabilities were plotted against the

codon site log-likelihoods estimated under M0, M8 or the

amino acid site log-likelihoods estimated under the equal

rates model (figures not shown).

Amino acid and codon site likelihoods may thus be used

as predictors of positive selection. In the following, we

focus on the amino acid site log-likelihood scores

estimated under the standard amino acid model (e.g.,

WAG ? F ? U) for testing positive selection and investi-

gate its statistical properties (type I error rates and the

power). Given the very similar behaviors for codon and

amino acid site lnL’s shown in Fig. 1, the results may

apply to a codon model-based site likelihood predictor as

well.

Type I Errors of Tests for Positive Selection

Of the 200 datasets of 300 codon sites simulated under a 32

taxa tree and a model of neutral evolution (x = 1 for all

sites), none were predicted to be positive under the bino-

mial test (the critical threshold hc = 0.071 based on Eq. 1),

while the Simes test predicted 13 sets being positive

(6.5 %). By comparison, for the same 200 simulated

datasets, the M8 ? M7 test predicted five sets to be posi-

tive (type 1 error rate = 2.5 %), while the M8 ? M8A test

surprisingly predicted 39 sets (19.5 %) to be positive under
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the v2 mixture criterion (see the Method) and 17 sets

(8.5 %) to be positive under the v2 with 1degree of freedom

criterion. Because the mixture v2 distribution criterion had

such a high FP it was not used in further analyses.

The number of wrong positive sites, among all 60,000

sites from the 200 data sets (at cutoff levels 0.95 and 0.99)

and related measures are listed in Table 1. The results show

that the SLL test had on average a FP \3 %; the NEB

prediction of the M8 model had a very high FP (over 40 %

on average and reached to 100 % in many datasets) and the

BEB prediction had a very small rate under the 0.95 and

0.99 cutoffs. The high FP of the NEB predictions high-

lights the importance of conducting prescreening for

positive datasets before using the NEB approach to predict

positively selected sites (Anisimova et al. 2002; Massing-

ham and Goldman 2005).

Power of the Gene Level Tests

For each of the six cases of positive selection (see the

Methods) 100 data sets each of 200 codon sites were

simulated and analyzed with the SLL and codon LRT tests.

For 200 sites, the critical hc at the standard a = 0.05 level

is 0.075 according to Eq. 1. However, since the actual

observed FP for site-wise predictions was only 3 %, this hc

calculated under the nominal a may be too conservative for

determining a gene-wise prediction of positive selection.

To adjust for the low FP in the site-wise predictions, we

used a = 0.03 in calculating a critical value for the bino-

mial test and hc ¼ 0:03þ 1:645

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:03�ð1�0:03Þ
200

¼
q

0:05. In

Table 2, we list the power of the binomial test based on the

two hc values (at a = 0.05 and 0.03) as well as that of the

Simes test. It also shows the power of the codon models in

predicting gene-wise selection for each case of the positive

selection scenarios.

Table 2 indicates that the SLL test correctly predicted

all datasets simulated in Case 1 as positively selected. The

same predictions were made for both LRT-based tests: the

M8 versus M7 and M8 versus M8A models. When the

branch lengths were increased or decreased by 10-fold

(Case 2 and Case 3), both being two extreme forms of

sequence divergence (highly divergent or highly similar)

and less likely in real data, the power of the SLL test was

reduced to \80 % under hc = 0.075 for the nominal

a = 0.05. However, if we set hc = 0.05 to reflect the low

FP in the site-wise predictions, then the powers for the two

cases were increased to 97 and 96 %, respectively, which

were slightly better than the LRT tests. For the very weak

selection case (Case 4) all tests had much reduced power

and under the more stringent criteria (hc = 0.075) the SLL

test had better power (27 %) than the M8 ? M8A test

(only 10 %). For the less weak selection case (Case 5) the

SLL had a slightly lower power (75 %) under the stringent

criteria than the M8/M8A test (80 %). However, using a

less-stringent criterion (hc = 0.05) the SLL test had much

higher power, being 80 % for Case 4 and 98 % for Case 5,

higher than the more powerful M8 ? M7 test. For Case 6

both LRT tests showed no predictive power, consistent

with the fact that the simulated data violated the assump-

tion for the codon models that rates of synonymous sub-

stitutions be the same across the codon sites. The SLL test,

however, retained some power for both the stringent and

less-stringent hc criteria and it reached a power of 60 % for

the latter.

Power of Site-Wise Prediction

To compare the power to detect positive selection at

individual sites, we plotted ROC curves averaged over the

100 replicated datasets for each case. For comparative

purposes, we plotted the power of SLL and two codon

models (M3 and M8), which estimate empirical Bayes

posterior probabilities that a site belongs to a positive

selection class. Figure 2a shows the ROC curves for the

four predictors (SLL, NEB-M3, NEB-M8, and BEB-M8) in

Case 1. All four predictors showed good power in pre-

dicting the positively selected sites. For example, at a FP

rate of 0.05, the TP rates for the four predictors were 0.88

(SLL), 0.80 (NEB/M3), 0.95 (NEB/M8), and 0.95 (BEB/

M8); at a FP rate of 0.20, the TP rates were increased to

0.97, 0.97, 0.99, and 0.99, respectively. Overall, Fig. 2a

shows the BEB and NEB predictors under M8 had higher

power than the SLL predictor, which in turn had higher

power than the NEB predictor under M3, especially at the

more useful low FP range (FP \ 0.10).

Case 2 is a case where the simulated sequences were

highly divergent and nucleotide substitutions were satu-

rated. The average ROC curves for the 100 replicated

datasets are shown in Fig. 2b. The BEB predictor under M8

obtained the highest power, followed by the NEB-M8 and

the SLL, while the NEB predictor under M3 again showed

the much lower power than the other models. Since the

generating model is M3, it may seem surprising that

Table 1 Number of sites falsely identified as under positive selection

Method Cutoff Wrong sites % Range (%)

SLL 0.95 1661 3 1–18 (0.3–6)

0.99 313 0.5 0–6 (0–2)

M8 (NEB) 0.95 24402 41 0–300 (0–100)

0.99 21750 36 0–300 (0–100)

M8 (BEB) 0.95 5 0.01 0–2 (0–0.66)

0.99 0 0 0–0 (0–0)

Two hundred datasets of 300 codon sites were simulated under neu-

tral evolution (x = 1) and analyzed
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posterior probabilities from M8 did better than M3. The

reason seems to be better estimation of the x for the

positive selection class under M8. The true values used for

simulating the positive selection class were x = 3.065 and

p = 0.269. The M3 model had a mean square error (MSE)

of x estimation being 0.21 for 50 of the data sets but the

MSE was 3.22 for the other 50, whereas the M8 model had

a MSE for x to be 0.14 for 89 of the data sets and 3.19 for

the other 11. The incorrectly estimated parameters under

both M3 and M8 showed the same pattern: the x for the

positive selection class was underestimated (the estimated

x was \1.46 for these datasets) and its corresponding

weight was overestimated (p C 0.58). Because the M3

model mis-estimated the parameters in half of the datasets

the average TP rates for the M3 NEB predictor were lowest

among the four predictors in Fig. 2b. The SLL predictor,

not based on the prediction of the x and p parameters,

showed a fairly good ROC curve. These results indicate

that the SLL predictor and the M8 predictors are good at

predicting positive selection sites even when the sequence

data are highly saturated with multiple substitutions.

Case 3 is a case where the simulated sequences were

very similar, which proved to be difficult for the codon

models (Anisimova et al. 2002; Suzuki and Nei 2004). The

power of all methods at various FP rate points was reduced

(Fig. 2c) compared to the data simulated under the original

tree (Fig. 2a), underscoring the difficulty in predicting

positively selected sites for all methods when the

sequences have little variation. The M8 BEB predictor was

slightly better than SLL, which was in turn slightly better

than the M8 NEB predictor and again the M3 NEB was

worst.

Conditions of very weak selection were evaluated in

Case 4. Previous studies have shown that the power of the

codon models in predicting positively selected sites is

reduced when data are simulated under weak selection

conditions (Anisimova et al. 2002; Massingham and

Goldman 2005). Figure 2d shows the average ROC curves

for the four predictors in this case. All methods showed

much lower power compared with that in Case 1. The M8

BEB predictor performed best and the M3 NEB predictor

did worst; the M8 NEB was slightly better than the SLL in

some range of the FP rates. Case 5 has the same x value

(1.5) in the positive selection class but its proportion

(0.269) is much higher than in Case 4. The average ROC

curves (Fig. 2e) shows the difference between the models

are small although the two M8 predictors (BEB and NEB

were slightly better than the M3 NEB and SLL.

In Case 6 the data were concatenated from three datasets

each simulated separately under the M0 model with

x = 0.08, 0.91 and 3.06, respectively. The combined data

violate the standard assumption of codon site models that the

synonymous substitution rates are constant and only the non-

synonymous substitution rates vary across the different x
classes (Smith and Hurst 1999; Pond and Muse 2005). Under

these conditions the codon models are misspecified and may

not perform well. Indeed, the codon LRT tests detected very

few datasets under positive selection (Table 2). On predicting

positively selected sites, the M3 and M8 models only iden-

tified six and four datasets, respectively, that have a class with

x[ 1 having weight[0.05. Figure 2f shows the four ROC

curves for the SLL, M8 NEB, M8 BEB, and M3 NEB pre-

dictors. The ROC curve for the SLL predictor was averaged

over all 100 replicated datasets, while the curves for the M8

and M3 predictors were averaged over the four and six

datasets that had a significant proportion of sites

(weight [ 0.05) in the class of x[ 1. While the SLL pre-

dictor reached a power of 0.55 at a FP rate of 0.2 in detecting

the positive sites the codon models had no power even in the

few datasets that they had predicted to have a x[ 1 class.

Table 2 Power of the SLL tests and the codon models

Positive selection case Number of positive sets predicted under SLL Number of positive sets predicted

under LRT (M8 ? M7/M8 ? M8A)b

Binomial

testa
Simes

test

Combined and

unique setsa

1) Original conditions from Lysin data 100 (100) 73 100 (100) 100/100

2) Branch lengths increased 10 fold 72 (97) 13 73 (97) 96/91

3) Branch lengths decreased 10 fold 67 (96) 31 79 (96) 92/95

4) Weak conditions 1 (x3 = 1.5, p3 = 0.05) 16 (76) 13 27 (80) 39/10

5) Weak conditions 2 (x3 = 1.5, p3 = 0.269) 71 (98) 16 75 (98) 95/80

6) Concatenated 3 M0 datasets 10 (57) 5 15 (60) 2/4

For each case, 100 datasets each of 200 codon sites were simulated and analyzed
a The first number was based on hc = 0.075 corresponding to the standard site-wise test a = 0.05 and the second number in brackets was based

on hc = 0.05 corresponding to a site-wise test a = 0.03 (see text for details)
b The M8 ? M7 test has two degrees of freedom (v2

2; 0:05 ¼ 5:991) and the M8 ? M8A test has one degree of freedom (v2
1 ;0:05 = 3.84)
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Empirical Case Studies

The ten real datasets listed in Table 3 have relatively minor

codon usage biases as measured by their effective number

of codons (Wright 1990) that range from 38.2 (vertebrate

b–globin and HIV-1 vif genes) to 53.6 (Japanese enceph-

alitis envelop gene). We applied the SLL test to the ten

datasets and for comparison we also used the codon models

(M7, M8, and M8A) to the same data. Table 3 lists the

numbers of taxa and sites in each dataset; the estimated

h and its critical value hc at the a = 0.05 level for the

binomial test; the Simes test; the positively selected sites

for the positive genes predicted under the SLL; the LRT

tests and the positively selected sites with the BEB and

NEB posterior probabilities [95 % estimated under M8.

Since the SLL-binomial test criteria were rather stringent

as seen in the simulation studies for both type I error rates

and power analyses, the results for the two datasets (HIV-1

pol and HIV-1 env-V3) were marked as ± as the estimated

h were only slightly smaller than hc and indeed the Simes

test predicted HIV-1 pol to be positive. The HIV-1 pol and

vertebrate b–globin data were previously analyzed with a

site-wise likelihood ratio test (Massingham and Goldman

2005). The HIV-1 env-V3 data were also pre-analyzed with

several other methods for detecting positive selection

including a random effects likelihood method which

A B

C D

E F

Fig. 2 a–f are the average ROC curves showing the power of several

predictors for positively selected sites on the 100 replicated datasets

simulated under each of the six cases of positive selection. In (f) the ROC

curves for the M3 and M8 models were averaged over the six and four

datasets that were predicted to have significant amount of positively

selected sites under the two models (their proportions were[0.05). The

predictors (see a for legends) include SLL; the naı̈ve empirical Bayes

probabilities estimated under M3 (M3 NEB) and under M8 (M8 NEB);

and the Bayes empirical Bayes probabilities estimated under M8 (M8

BEB)
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considered both non-synonymous and synonymous rate

variations across sites (Pond and Frost 2005). The Tax data

were analyzed with a parsimony-based analysis (Suzuki

and Nei 2004). The results from the previous methods for

these four datasets were also included in Table 3.

The SLL method made the same predictions as the

codon models in eight of the ten datasets at the gene level.

They made different predictions in the other two datasets

(the vertebrate b–globin and Human T cell lymphotropic

virus Tax genes), where positive selection was inferred

under the codon models but not SLL. As will be discussed

in the following section, this was not due to a weaker

power in SLL and, in fact, at least for the Tax gene data, the

SLL prediction appeared more reasonable. The predictions

of positively selected sites were largely similar for both

methods, although there were some positive sites (e.g., site

40 and site 87 of the HIV-1 envelop gene V3 region) that

were predicted under SLL but not under the codon models

or vice versa. This will also be discussed below.

Discussion

We have shown that there is a negative correlation between

the site log-likelihood in an amino acid alignment and the

probability that a site has experienced positive selection.

Table 3 The SLL and codon LRT tests applied to ten real datasets

Dataset (Number

of taxa/Number

of sites)

SLL LRT

Gene level selection Positive sitesa Gene level selection Positive sitesb

Binomial test

(h/hc)

Simes test M8 ? M7/M8 ? M8A

Abalone sperm

lysin (25/135)

0.09/0.08: ? - 4 9 32 33 40 41 44 70 74 83 86 120 ?/? BEB: 4 7 9 10 12 14 32 33 36 41 44 64 67

70 74 83 86 87 113 120 126 127 132

134 NEB: same as BEB without 127

Drosophila

alcohol

dehydrogenase

(23/254)

0.03/0.07: - - (49 68 69 98 163 170 201) -/- None

Flavivirus

E-glycoprotein

(22/496)

0.03/0.07: - - (37 46 81 124 132 171 203 227 272 303

322 357 383 391 492)

-/- None

Flavivirus NS-5

(18/342)

0.04/0.07: - - (42 61 64 66 103 106 173 176 188 189

216 238)

-/- None

Vertebrate b–

globin (17/144)

0.04/0.08: - - (11 50 67 85 123) ?/? BEB: 7 123 NEB: 7 50 67 85 123 SLRc:

none

HIV-1 pol (23/

947)

0.05/0.06: ± ? 2 3 4 14 39 41 67 97 223 224 237 264
302 313 347 374 379 388 395 399
431 450 459 462 478 479 481 488
492 503 535 552 568 570 583 650
654 670 671 732 761 771 779 782
784 816 890 892 894 925

?/? BEB: 41 67 347 379 431 459 478 479

492 671 771 779 NEB: 2 3 39 41 67

224 313 347 379 395 431 459 478 479

492 568 570 654 671 761 771 779 892

SLRc: 2 3 4 14 41 67 313 347 379 388

431 459 462 478 568 570 654 732 761

779 890

HIV-1 vif (29/

192)

0.10/0.08: ? ? 22 31 33 37 39 47 48 63 92 101 122

127 128 132 151 154 155 159 167

?/? BEB: 31 33 39 63 92 101 109 122 127

167 NEB: same as BEB

HIV-1 env-V3

(13/91)

0.08/0.09: ± - 26 28 40 51 66 69 76 ?/? BEB: 26 28 51 66 87 NEB: 28 66 87

RELc: 26 28 40 51 66

Japanese
encephalitis
env (23/500)

0.05/0.07: - - (33 35 36 76 126 129 138 146 153 161

166 222 227 242 253 323 327 336

366 387 399 434 466 486 490)

-/- None

Human T cell

lymphotropic

virus Tax (20/

181)

0.04/0.08: - - (2 39 53 115 146 154 166) ?/? BEB: 2 4 39 43 53 60 62 69 81 85 92 101

108 115 146 152 154 157 161 166 181

NEB: all sites positive with p = 1

Parsc: none

a The positive sites were predicted under the SLL test; those also predicted under the Benjamini–Hochberg procedure for multiple tests corrections (see Methods)

were underscored. The sites whose BEB or NEB posterior probabilities were\95 % are in bold font. The other sites had BEB or NEB probabilities[95 %. Sites in

brackets are those that had site lnL smaller than the 5th percentile of the simulated lnL distribution under no selection but the whole data did not pass the SLL test
b Sites with BEB and NEB [ 95 % are shown
c Results obtained from previous analyses of these data sets

SLR site-wise likelihood ratio test (Massingham and Goldman 2005), REL random effects likelihood (Pond and Frost 2005), Pars parsimony-based analysis (Suzuki

and Nei 2004)
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There are several possible explanations of why this corre-

lation exists. First, it is expected that sites undergoing

positive selection (especially those of diversifying selec-

tion associated with host-parasite co-evolution and sexual

conflict at the molecular level, for example) will neces-

sarily be more variable on average (Hayes et al. 2010). This

can be demonstrated for example using a simple three

taxon star tree and the WAG substitution model (see

Supplementary Figure S1). As shown in Figure S1, site

patterns with more states tend to have lower site-likeli-

hoods than site patterns with fewer states. Indeed, there is a

strong negative linear correlation between the log-likeli-

hoods and parsimony scores across the amino acid sites

(regression R2 = 0.97); yet the correlation is much weaker

(R2 = 0.41) between the site-wise log-likelihoods and the

consistency indices (Kluge and Farris 1969) indicating low

likelihoods are more related to site variability than to

homoplasy per se. Another factor responsible for this cor-

relation is related to the ‘‘radical’’ nature of substitutions

that occur on the amino acid level at positively selected

sites. Although most codon models such as those used here

do not directly account for ‘‘radical’’ versus ‘‘conservative’’

changes on the amino acid level, the number of codon

changes required for more radical amino acid substitutions

tends to be greater. For example, if one plots the exchange-

abilities between amino acid types in the WAG matrix

(Whelan and Goldman 2001) versus the minimum number

of codon substitutions required for a given substitution in a

codon model, it is clear that amino acid interchanges with

low exchangeabilities (i.e., more ‘‘radical’’ changes) tend

to require more substitutions on the nucleotide level (Fig-

ure S2). As a result it is not surprising that sites where a

large number of non-synonymous substitutions occurred

have an elevated probability of being in a positively

selected site class and these sites, by virtue of displaying

more radical amino acid interchanges, will tend to have

lower site log-likelihoods. Furthermore, some studies have

pointed out positively selected sites are more likely to

appear in the solvent exposed areas of protein surfaces,

which also tend to be more variable (e.g., Osorio et al.

2007; Meyer and Wilke 2012).

Regardless of the reasons for the correlations, we have

demonstrated with simulations that site-wise log-likelihood

tests (SLL) can be used to predict genes under positive

selection and detect the positively selected sites. For the

200 datasets simulated under strict neutral evolution (the

hardest case to distinguish from positive selection), the

SLL-binomial test had a very low FP (0 %) and the Simes

test had a FP of 6.5 % at the gene level. Both appeared

better than the M8 ? M8A LRT test, which had high FP of

19.5 and 8.5 % under a � v0
2 ? � v1

2 mixture and a v1
2

criterion, respectively. Another commonly used LRT test,

comparing M8 and M7 models, had a FP of 2.5 %. For the

same data, the FP for predicting sites under positive

selection was 3 % for the SLL test and it was very high

(41 %) under the NEB posterior probabilities and very

small under the BEB probabilities from the M8 model. A

number of previous studies have shown that, the NEB

prediction under the M8 model had a very high FP (35 %)

if the datasets were not prescreened for being under posi-

tive selection at the gene level (e.g., Anisimova et al. 2002;

Massingham and Goldman 2005). Given the continuous

debate in the literature about the FP of codon-based models

(Suzuki and Nei 2004; Hughes 2007; Zhai et al. 2012) the

low FP in the SLL tests are appreciable.

We further studied the power of the SLL tests in six

cases of positive selection simulated based on a lysin tree.

For the data simulated under the same conditions (includ-

ing the x parameters and branch lengths) as estimated from

the real lysin data, the SLL test showed perfect power in

predicting the datasets under positive selection (Table 2).

The SLL test also had high power in predicting the posi-

tively selected sites as shown in the ROC curve plotting the

TP to the FP, similar to the site-wise Bayes predictions

under the M8 model (Fig. 2a). For the simulated cases

where the sequences were very similar or very divergent or

had very weak signal of positive selection the SLL tests

had less power in predicting datasets under positive

selection than seen in the LRT tests (Table 2). However,

the ROC curves showing the power in predicting positively

selected sites were not much different from the NEB pre-

dictor under M8 and often better than the M3-based NEB

predictor (Fig. 2b–e). This suggested the SLL-binomial test

based on the hc calculated under the nominal a = 0.05

(Eq. 1) was too stringent for deciding positive selection at

the gene level. Setting a = 0.03 in Eq. 1, which was the FP

of the SLL in the site-wise prediction (see Table 1), the

proportion of the datasets predicted to be under positive

selection was much larger in each of the four cases and

better than the power of the commonly used M8 ? M7 test

(Table 2). For the sixth case where the datasets were

concatenated data from three sub-datasets each simulated

under M0 with one of them being a positive selection class,

the assumption for the codon models that synonymous

substitutions rates are constant across the sites was vio-

lated. Such violations are possible with real data. For

instance, a multi-gene dataset in a phylogenomic study

may contain genes with synonymous substitution rates

varying across sites or loci, a phenomenon that could

occur, for example, when codon usage in highly expressed

genes is subject to selection (Akashi and Eyre-Walker

1998) or there are strong genetic hitchhiking effects

(Barton 2000). Both M8 ? M7 and M8 ? M8A tests

detected very few sets under positive selection while the

SLL identified 60 positive sets under the less stringent hc

criterion. Furthermore, both NEB and BEB based ROC
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curves under the M3 and M8 models had no power in

detecting positively selected sites even for the very few

datasets that were estimated to have a class of x[ 1 and

p [ 0.05, whereas the SLL curve showed some power and

the average TP rate reached 0.55 at a FP rate of 0.2 for all

100 datasets (Fig. 2f). This demonstrates that the SLL

method can partially alleviate the problem associated with

variation in synonymous substitution rates while the stan-

dard codon site model did not, although newer codon

models (Rubinstein et al. 2011) that take into account this

variation were not tested here.

The results of the analyses of the ten empirical datasets

indicate that the SLL test usually made similar predictions

to the codon LRT tests. However, the two methods made

different predictions for the vertebrate b-globin and the

HTLV Tax data sets. Both data sets were predicted to have

experienced positive selection using LRT tests but not so

under the SLL test. For the b-globin data the non-positive

prediction by SLL may be due to its relatively lower power

for gene-wise testing, although it is unknown what the

correct prediction is in this case as some studies have

suggested there are no positively selected sites in this gene

(Massingham and Goldman 2005). The Tax gene data,

however, clearly showed the benefit that the SLL can make

more reasonable gene-wise prediction in some case. The

Tax data was originally used to argue that the codon site

models can sometimes generate false predictions of posi-

tively selected sites with high confidence even though the

proteins under consideration were possibly not subject to

positive selection (Suzuki and Nei 2004). The data were

comprised of 20 taxa and 181 codon sites, 87 % of which

were constant across all sequences. Of the remainder 23

sites, 2 had a single sequence with a synonymous change

and 21 had a single sequence with a non-synonymous

change, 19 of which were nucleotide transversions and two

were transitions. Both SLL and a parsimony-based method

(Suzuki and Nei 2004) predict that the gene has not

experienced positive selection. However, all codon models

(M0, M3 and M8) predicted very strong positive selection

in this gene (x = 4.87 under M0) and all 181 sites were

estimated by the NEB predictions to be under positive

selection with 100 % posterior probability (Table 3). The

BEB under M8, although less liberal, predicted all 21 sites

with a single non-synonymous change to be positively

selected with high confidence.

To determine thresholds for the SLL test, a null distri-

bution is obtained from a large number of codons (20,000

in all analyses in the paper) simulated under neutral evo-

lution conditions using the M8A model, which takes the

same parameter values from the original data estimated

under a M8A model with equal codon frequencies (all 1/61,

the F0 model of codon frequencies in PAML). The simu-

lated codon sequences are then analyzed under a standard

amino acid model with a discrete Gamma distribution

(WAG ? F ? G in this study) and the 5th percentile of the

site log-likelihood distribution is used as a threshold to

compare with the site log-likelihoods from the original data

estimated under the same amino acid model. To allow

unequal frequencies of codons one can determine thresh-

olds as above with M8A but with codon frequencies

modeled using nucleotide frequencies at the three codon

positions (i.e., the F3 9 4 model in PAML). We found,

however, that the type I error of the SLL tests were fairly

robust to the assumption of equal codon frequencies. To

test these we reconsidered simulations for the type 1 error

rates described in the earlier sections (see Table 1). We

simulated the data under M0 with the codon frequencies

being from the F3 9 4 model applied to the lysin data,

rather than using equal codon frequencies as in the original

simulations for testing type 1 errors. The resulting SLL

tests using M8A under F0 codon frequencies to determine

the thresholds had a type 1 error rate of 0.051 at the site-

wise level and it was 0.049 at the gene-wise level (com-

bined binomial and Simes tests). In addition, we found that

the performance of the gene-wise test was degraded when

F3 9 4 frequencies were used to determine thresholds

(Table S1 in Supplemental Material 3). Other choices of

null simulating models are also possible and should be

investigated in the future. They include simulating a large

number of codon sites under the M0 model with x = 1 or

under an unrestricted empirical codon model (Kosiol et al.

2007; Doron-Faigenboim and Pupko 2007) and determin-

ing a corresponding amino acid site log-likelihood thresh-

old under an amino acid model. The latter approach may be

of particular interest as this way we can have a fair com-

parison between the SLL and the codon models as data

generated under an empirical codon model will not bias the

result favoring the mechanistic codon models which were

used to simulate all the data in the current analyses.

Although we have demonstrated the usefulness of the

SLL approach for detecting positive selection from a

sequence alignment through simulation and several case

examples, it is worthwhile to consider the impact of model

misspecification on the effectiveness of this approach. On

the one hand, model misspecification may improve the

identification of true positively selected sites, as the posi-

tively selected sites are more variable and often contain

radical amino acid changes that are not expected from the

standard amino acid model and so will have lower proba-

bility of occurring. On the other hand, many forms of

model misspecification at a site coupled with relatively

high site-rates are likely to manifest in very low site like-

lihoods in amino acid models which could mislead one into

inferring that a site is under positive selection, even if it

was not. In codon models the synonymous changes serve as

a kind of ‘‘barometer’’ so that, in theory, positive selection
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is inferred only when the rate of amino acid changes is

occurring faster than the rate of synonymous changes in

codons. However, if some non-synonymous sites are

changing in a way that does not obey any model of the

best-estimated codon rate matrices, then it is possible that

this will lead to erroneously better fit to the class with large

dN/dS ratios where rare unexpected nonsynonymous

changes happen more often. An example of the latter could

be an excess of changes between amino acids that require

more than one non-synonymous nucleotide change in the

codon. For mechanistic codon models, these are supposed

to have a zero instantaneous rate and thus can only be

explained by two or more sequential changes, but it is

possible that in nature some codons in some genes are

prone to ‘‘double’’ mutations that allow this to happen in

one step (Kosiol et al. 2007; Doron-Faigenboim and Pupko

2007).

To illustrate this point, we consider the sequence pattern

of two codon sites (site 87 and site 40) in the HIV-1

envelope gene V3 region data. Site 87 was predicted to be a

positively selected site with high posterior probability

support ([99 %) under the M8 model, but it was not picked

as such a site under the SLL. Site 40, however, was

detected as a strong positively selected site under the SLL

but was not so estimated under the codon models (the

posterior probability was 0.73 under M8). Site 87 consisted

of the amino acids V, I, and a single T, whereas site 40

consisted of I, F, and a single M. The rate in the WAG ? F

matrix from V to I is 0.52 which is comparable to the rate

from M to I (0.5) but the rate from I to V is 0.95 which is

much larger than the rate from I to M (0.01). The reciprocal

rates between I and T and between V and T, which are

between 0.1 and 0.18, are also greater than the rates

between F and I and between F and M, which are between

0.01and 0.13. Consequently, it is not surprising that site 40

has smaller amino acid site likelihood than site 87. How-

ever, at site 87 there are two pairs of sister taxa that have

codons differing by two nucleotides, while site 40 has only

one pair of sister taxa with codons differing by two

nucleotides (Fig. 3), which explains why the codon model

predicted site 87 as a strong positively selected site but not

site 40. It is intriguing to note that Pond and Frost (2005)

whose methods account for rate variations both among

synonymous and non-synonymous codon sites, also found

site 40 to have a relatively high posterior probability of

positive selection (p = 0.899) but did not for site 87.

Moreover, site 40 is within the amino acid stretch (sites

37–51) of the envelope protein that interacts with mono-

clonal antibodies (Yamaguchi and Gojobori 1997) and the

whole consensus V3 loop (sites 27 through 60) enclosed by

the disulfide bridge linking a pair of cysteine residues also

contains site 28 and site 51 that are predicted to be posi-

tively selected by both SLL and codon models.

Conclusions

We used both simulations and empirical case studies to

show the amino acid site likelihood score estimated under

the standard amino acid models can be used to predict

proteins under positive selection with a low FP and a power

comparable to the standard codon models. For data that fit

the codon site models well, the amino acid SLL approach

predicts sites under positive selection nearly as well as

Fig. 3 The phylogenetic tree of

HIV-1 env gene V3 region

estimated under WAGF ? U,

with codons and amino acids at

site 87 and site 40 indicated in

the brackets after the taxon

names. The first codon and the

following one-letter amino acid

residue, separated by /, are for

site 87; the second codon and its

one-letter amino acid residue

(also separated by /) are for site

40. The codons between two

neighboring taxa containing

changes in 2 nucleotides are

boxed
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using the codon site models to predict the Bayes posterior

probabilities of sites being in a positive selection class. We

also gave an example where the codon models generate

many false-positive predictions with high confidence for a

very conserved dataset with few and peculiar substitution

patterns. In this case the SLL test made a more reasonable

prediction of no positive selection in the data. While our

method should not be considered as superior to the widely

used codon models, it provides an alternative way to detect

positive selection that is robust to some forms of codon

model misspecification as shown in Case 6 of the simula-

tion studies. In circumstances where the assumptions of the

codon models are violated (e.g., the rate of synonymous

substitutions is not constant across sites or the codon usage

is changing drastically over the tree) or these models

cannot be used (e.g., where the genetic code differs across

sequences in the data), the SLL method can still be utilized

and may provide a more robust result.
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