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Abstract

The w statistic introduced by Lockhart et al. (1998. A covariotide model explains apparent phylogenetic structure of
oxygenic photosynthetic lineages. Mol Biol Evol. 15:1183–1188) is a simple and easily calculated statistic intended to detect
heterotachy by comparing amino acid substitution patterns between two monophyletic groups of protein sequences. It is
defined as the difference between the fraction of varied sites in both groups and the fraction of varied sites in each group.
The w test has been used to distinguish a covarion process from equal rates and rates variation across sites processes.
Using simulation we show that the w test is effective for small data sets and for data sets that have low substitution rates
in the groups but can have difficulties when these conditions are not met. Using site entropy as a measure of variability of
a sequence site, we modify the w statistic to a w# statistic by assigning as varied in one group those sites that are actually
varied in both groups but have a large entropy difference. We show that the w# test has more power to detect two kinds
of heterotachy processes (covarion and bivariate rate shifts) in large and variable data. We also show that a test of
Pearson’s correlation of the site entropies between two monophyletic groups can be used to detect heterotachy and has
more power than the w# test. Furthermore, we demonstrate that there are settings where the correlation test as well as w
and w# tests do not detect heterotachy signals in data simulated under a branch length mixture model. In such cases, it is
sometimes possible to detect heterotachy through subselection of appropriate taxa. Finally, we discuss the abilities of the
three statistical tests to detect a fourth mode of heterotachy: lineage-specific changes in proportion of variable sites.
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Introduction
Given an alignment of protein sequences from two mono-
phyletic groups of taxa, five types of site patterns are readily
identifiable by visual inspection (Lockhart et al. 1998): type
1 sites have the same residue in both groups; type 2 sites
have different residues between the groups but have the
same residue within the same group; types 3 and 4 sites
have variable residues in one group but the same residue
in the second group; and type 5 sites have variable residues
in both groups. Types 3 and 4 sites are widely recognized as
having a typical ‘‘covarion’’ site pattern: sites are variable in
one clade but invariable in the other clades or vice versa
(Fitch and Markowitz 1970). This feature of changing
the rate of variation at sites in different sequences is more
generally called ‘‘heterotachy’’ meaning ‘‘different speeds’’
of evolution (Lopez et al. 2002). Based on the differences in
temporal and spatial distributions of rate shifts, several het-
erotachy models have been developed, including (see fig. 1)
1) the covarion models where rate change is a gradual and
stochastic process acting on all branches of a phylogeny
(Tuffley and Steel 1998; Galtier 2001; Huelsenbeck 2002;
Wang et al. 2007; Whelan 2008), 2) bivariate rate shift mod-
els where sudden changes in rates at multiple sites occur at
a particular split in the tree and the two subtrees undergo
independent rate variation across sites (Susko et al. 2002),

3) mixture of branch length models where a proportion of
sites are generated from a tree having one set of branch
lengths and the remaining sites generated from the same
tree but having a different set of branch lengths (Kolacz-
kowski and Thornton 2004, 2008; Spencer et al. 2005; Zhou
et al. 2007; Pagel and Meade 2008), and 4) lineage-specific
variation in the proportion of variable sites (Lockhart et al.
1996, 2006; Lopez et al. 2002). These various forms of het-
erotachy can generally be viewed as a multivariate distri-
bution of rates-across-sites variations (Wu and Susko
2009). Various simulation and empirical studies have
shown that ignoring the heterotachy property of sequence
evolution may lead to topological biases that will mislead
tree building (e.g., Lockhart et al. 1996, 2006; Kolaczkowski
and Thornton 2004; Wang, Susko et al. 2008). Furthermore,
analyzing heterotachy properties can be used to detect
functional divergence of protein families (e.g., Gu 1999;
Gaucher et al. 2001; Knudsen and Miyamoto 2001; Pupko
and Galtier 2002; Penn et al. 2008; Wang et al. 2009; Studer
and Robinson-Rechavi 2010) and positive selection (Silt-
berg and Liberles 2002; Guindon et al. 2004; Dorman 2007).

Because of the importance of heterotachy processes in
protein evolution and phylogenetic studies, computational
methods have been developed to detect whether hetero-
tachy has played a role in the evolution of a protein family
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(e.g., Lopez et al. 1999; Baele et al. 2006). Most of the meth-
ods employ likelihood ratio tests (Gaucher et al. 2001;
Knudsen and Miyamoto 2001; Pupko and Galtier 2002;
Penn et al. 2008; Wang et al. 2009) to compare the relative
fit of a heterotachy model versus a default homotachy
model, which is typically a rates variation across sites
(RAS) mixture model based on a discretized gamma distri-
bution of site rates. These methods, although statistically
sound, have the disadvantage of being computationally in-
tensive (Wang et al. 2009).

Heterotachy, whatever form it takes, will ultimately
show heterotachous patterns at the sites of the sequence
alignment. For instance, a protein family evolving according
to a covarion process will necessarily have higher propor-
tions of types 3 and 4 sites in the sequences than a protein
family evolving in a homotachous mode. Sequences simu-
lated under different models including the equal rates (ER),
RAS, and a general covarion model (COV) (Wang et al.
2007) for the same tree (an elongation factor [EF] tree from
an alignment of 13 bacterial elongation factor Tu [EF-Tu]
and 17 elongation factor 1a [EF-1a] sequences) show that
the numbers of the five site types are very different among
these models: ER has the highest number of type 5 sites and
very few sites of types 1 and 2; RAS has fewer type 5 sites
than under the ER model but its number is greater than
types 3 and 4 sites combined; COV has more types 3
and 4 sites combined than type 5 sites; both RAS and
COV have similar numbers of types 1 and 2 sites. Therefore,
in principle, the different models of evolution may be
distinguished by comparing the numbers of site types they

induce in the data. Indeed, the elegant w statistic, that
compares the proportions of the types 3 and 4 sites and
type 5 sites in an alignment, was first proposed by Lockhart
et al. (1998) to test whether covarion or RAS processes gen-
erated the data under consideration. Ané et al. (2005)
further improved the w test by obtaining null distributions
for hypothesis testing using a parametric bootstrapping
approach. Other studies have applied the test to phyloge-
netic inference (Lockhart et al. 2000) and empirical data for
detecting covarion evolution (Gruenheit et al. 2008).

Let Ni denote the numbers of type i sites (i5 1, 2, 3, 4, 5)
and N is the total number of sites in an alignment. The w
statistic originally given in Lockhart et al. (1998) and mod-
ified in Ané et al. (2005) is

w5
N5

N
� ðN3 þ N5ÞðN4 þ N5Þ

N2
: ð1Þ

The first term on the right-hand side of the equation is
the proportion of the sites varying in both groups (N5

sites), and the second term is the product of the propor-
tions of sites varying in one group and that in the other
group. Under the ER model, as there is no correlation be-
tween the variabilities of the two groups of taxa, the two
terms should be approximately equal so that the ex-
pected value of w is 0. Under the RAS model, if one group
of taxa is variable at a particular site, then other groups of
taxa are more likely to be variable at that site. Therefore,
the RAS model induces a strong correlation between the
variability of one group and other groups at sites. The N3

and N4 should be small so that w is positive. Under the

FIG. 1. Various models of rate variation across sites and lineages. The thickness of the lines represents different rates: the thicker the line, the
higher the rate is at the site for the lineage. (a) equal rates; (b) rates-across-sites; (c) covarion; (d) bivariate rates—under this model the two
subtrees are allowed to have different rates and the rates vary across sites independently between the two subtrees; (e) branch length mixture;
(f) lineage-specific variation in proportions of variable sites. (c)–(f) are heterotachy models. The solid and dashed lines in (c) represent that the
lineage can be switched ‘‘ON’’ or ‘‘OFF’’ for substitution, respectively. This figure is partially adapted from Wu and Susko (2009).
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COV models, there is less correlation between the vari-
abilities of the two groups and so N3 and N4 will be large.
Therefore, although w is expected to be positive, it should
be smaller under COV than under the RAS model (Ané
et al. 2005). Although the foregoing definitions are rea-
sonable, it should be noted that the N3 and N4 sites only
represent a subset of patterns expected under the cova-
rion model. For example, covarion sites may in fact dis-
play variable residues in both groups but one group may
be more variable than the other (Wang et al. 2009). The
above expression for w effectively ignores these sites, and
this may, we suspect, be part of the reason why w is quite
sensitive to taxon sampling (Gruenheit et al. 2008). In the
simulation settings we will consider, given a large align-
ment with many taxa in each group, it is possible that
there are always at least a few variant residues at each
site in both groups. Under these conditions, the w test
should have very low power to detect covarion evolution
or other heterotachy processes. We propose a modified w
test and correlation test designed to detect heterotachy
in such cases.

Methods

A Modified w Statistic (w#) for Covarion Tests
The w statistic effectively checks whether there are more
sites than expected under RAS that are variable in one
group but not the other. Such sites likely have higher rates
in the variable group and lower rates in the other. Similarly,
evidence for heterotachy is also provided by an excess of
sites that vary in both groups but that show much less var-
iability in one of the groups. We modify the w test by add-
ing such sites to the counts of those that vary in only one of
the groups. Let

w# ¼ N5 �N#
3 �N#

4

N � ðN3þN#
3þN5 �N#

3 �N#
4ÞðN4þN#

4þN5 �N#
3 �N#

4Þ
N2

¼ N5 �N#
3 �N#

4

N � ðN3þN5 �N#
4ÞðN4þN5 �N#

3Þ
N2 ;

ð2Þ

where N3, N4, N5, and N have the same meaning as before and
N#

3 (respectively, N#
4) is the number of the N5 sites that have

a large rate difference that warrant them to be considered to
be N3 or N4 sites. The rate, or the variability of a site, can be
measured by the Shannon entropy, which is calculated as
follows:

H5 �
X20

j¼1

pj � logðpjÞ; ð3Þ

where pj is the amino acid frequency vector at the site. Higher
entropy means the site is highly variable. The values range
from 0, when all sequences have the same amino acid at a site,
to a maximum of 4.3219, when all 20 amino acids are repre-
sented and equally frequent at the site. A covarion site of the
N3 or N4 type will have zero entropy in one group and nonzero
entropy in another group, and consequently, this site will usu-
ally have a big entropy difference between the two groups
when the variable group has several different amino acids
at the site.

To determine the critical value of entropy difference
that assigns an N5 site to be N#

3 or N#
4 site, we simulate a data

set of 100,000 sites under an RAS model for the same tree
estimated from the target data and calculate the 5% per-
centile of the distribution of the entropy difference of the
100,000 RAS sites. If the entropy difference of an N5 site in
a target sequence alignment is bigger than this 5% percen-
tile value, then it will be assigned to an N#

3 or N#
4 site.

A Site Entropy-Based Correlation Test
Under an RAS model, site variation in one group of se-
quences is positively correlated with the variation in the
other group of sequences. Under heterotachy models
like the covarion model, rate variation at sites within
each of the two groups is also correlated because the
variability of rates changes gradually along the tree. How-
ever, for the covarion model the correlation will be weak-
er than for RAS as sites switching from ON to OFF and
from OFF to ON diminishes the correlation. Under an ER
model, the variability of one group is not correlated with
that of the other group. Therefore, if we measure site
variability by the Shannon entropy of the site, we can
distinguish between the covarion and RAS models as
a weaker correlation between site entropies under cova-
rions than under RAS. Given two sets of N site entropies
calculated as in equation (3) for clades 1 and 2, the Pear-
son correlation coefficient r between site entropies of
the two clades is computed using the equation

r5

PN
i ðH

ðiÞ
1 � �H1ÞðHðiÞ

2 � �H2ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i ðH

ðiÞ
1 � �H1Þ2PN

i ðH
ðiÞ
2 � �H2Þ2

q ; ð4Þ

where H
ðiÞ
1 and H

ðiÞ
2 are the entropies for clades 1 and 2 at

site i and �H1 and �H2 are the average entropy across the sites
for clades 1 and 2, respectively.

For the three tests (w, w#, and the Pearson correlation
coefficient of site entropy), we used parametric bootstrap-
ping (Ané et al. 2005) to obtain null distributions of the test
statistics under the RAS model. If the test statistic is within
the left 5% tail of the null RAS distribution, then the RAS
model is rejected at the 5% level. The three covarion tests,
partially modified from the code for calculating the w sta-
tistic (Ané et al. 2005), are implemented in covTests.c
(http://www.mathstat.dal.ca/;hcwang/Procov/).

In addition to testing for covarion processes, we also ap-
plied the three tests to data simulated under three other
heterotachy models: an uncorrelated bivariate rate model
where rates are independently assigned between two
monophyletic groups (Susko et al. 2002; see fig. 1d);
a branch length mixture model where there are multiple
sets of branch lengths for the same topology for different
site partitions of the alignment (Kolaczkowski and Thorn-
ton 2004; see fig. 1e); and a model that allows lineage-spe-
cific changes in proportion of variable sites (Lockhart et al.
1996; Shavit Grievink et al. 2008; see fig. 1f).

Simulations
As different settings are used for simulating different het-
erotachy models, we summarize the models, trees, param-
eter settings, and simulation programs as well as null
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distributions in table 1 and describe them in detail in the
following subsections.

Covarion Simulations
The first tree used in our simulations is shown in figure 2.
This topology has two monophyletic groups each with the
same number of taxa and each forming a subtree in the
shape of a star tree connected to the other subtree by
an internal edge, which has length b. By using the star tree
for the two subtrees, we can minimize the number of set-
tings for edge lengths within the subtrees so that the sim-
ulation will be targeted to overall edge lengths. Each edge
within the two subtrees has an identical length of a. In all
simulations, we set the internal edge length to b5 1.0 sub-
stitution per site and varied edge lengths a to be 0.1, 0.3, 0.5,
or 0.7. To look at the effect of the size of the subtrees on the
analyses, we varied the numbers of taxa per clade to be 5,
10, 15, and 20, respectively, for different simulations. Fur-
thermore, in order to check the efficiency of the methods
we also simulated very large data sets (150 taxa per clade)
with 1,000 amino acid sites and varied edge lengths a to be
0.1, 0.3, 0.5, or 0.7. Computational times for this size of data
with some likelihood-based methods, such as using PRO-
COV (Wang et al. 2009), are prohibitive.

We considered both the type I error and the power of
the tests. The type I error rate is the probability of rejecting
the null hypothesis when it is true. For 100 simulations, the
type I error for a 0.05-level test should be within 0.05 ± 1.96ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:05�0:95
100

q
(i.e., in the range of 0.73–9.27%). The power of

a test is the probability of correctly rejecting the null hy-
pothesis. To check the type I error of the tests, we simu-
lated 100 data sets of 1,000 sites under the WAG þ C (a)
model (set a 5 0.5) using seq-gen (Rambaut and Grassly
1997). To evaluate the power of the tests, we simulated 100

data sets under the general covarion model, using seq-gen-
aminocov (Wang, Li et al. 2008) to generate sequences of
1,000 sites under the WAG þC (a) model (set a5 0.5) and
covarion parameters s01 5 0.5; s10 5 0.5; s11 5 0.5 and
covarion ‘‘switch-on’’ frequency p5 0.75 (these parameter
settings represent the average estimated covarion param-
eters for most of the empirical data sets we tested; see
Wang et al. 2007). We then used RAxML (Stamatakis
2006) under the WAG þ C (a) model to estimate a from
each of the simulated 100 data sets by fixing the tree as the
simulating tree but optimizing edge lengths. We used each
of the 100 estimated a values and trees to simulate, sep-
arately, 1,000 data sets of the same number of taxa and
1,000 sites under the WAG þ C (a) model with seq-
gen. We calculated the three quantities (w, w#, and the
Pearson correlation coefficient) for the RAS- or COV-sim-
ulated data sets and each of the corresponding 1,000 RAS-
simulated data sets. For the type I error evaluation, if any of
the three quantities for the RAS-simulated data is less than
the 50th smallest corresponding quantity among the 1,000
RAS-simulated replicated data sets, then that quantity in-
correctly rejects the RAS process in the data; otherwise, it
correctly recognizes it to be an RAS data set. For the power
evaluations, if any of the three quantities for the COV-sim-
ulated data is less than the 50th smallest corresponding
quantity among the 1,000 RAS-simulated data sets, then
that quantity correctly assigns the COV-simulated data
as a covarion data set; otherwise, it wrongly recognizes
it to be an RAS data set.

Simulations under a Bivariate Rate Model
To evaluate the powers of the w, w#, and correlation tests
for data simulated under the bivariate rate model, we used
indel-seq-gen (Strope et al. 2009) under a WAG þ C (a)

Table 1. Models, Parameters, and Programs for Simulating Heterotachy.

Model Example Tree
Sequence
Length

Parameters
(number of simulated
data sets 5 100) Program

Null Distribution
(for each heterotachy data set,
simulate 1,000 RAS data sets)

General covarion model Figure 2 1,000 WAG 1 G (a),
a 5 0.5; s01 5 0.5;
s10 5 0.5; s11 5 0.5;
p 5 0.75

Seq-gen-aminocov WAG 1 G (a); 1,000 sites

Bivariate model Figure 2 1,000 WAG 1 G (a), a 5 1.0;
two subsets were
simulated separately
from the same root
sequence

indel-seq-gen WAG 1 G (a); 1,000 sites

Branch length mixture
model

Figure 3 1,000 WAG 1 G (a), a 5 0.5;
half of the sites
from the left or
right trees in figure 3

Seq-gen WAG 1 G (a); 1,000 sites

Branch length mixture
model with taxon
subselection

Figure 4 1,000 WAG 1 G (a), a 5 0.5;
half of the sites from
the left or right trees
in figure 4

Seq-gen WAG 1 G (a); 1,000 sites

Lineage-specific
change in pvar

Figure 2 in
Shavit Grievink et al.
(2008)

10,000 WAG 1 G (a) 1 I 1
event, a 5 0.5,
pinv 5 0.8;
event pvar 5 0.2

LineageSpecificSeqGen WAG 1 G (a) 1 I; 10,000
sites
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model to get a root sequence of 1,000 amino acid sites for
the simulating tree (fig. 2). We set a to 1.0 in this simulation
as prior simulations indicated that all the tests will have
a perfect power when setting a5 0.5. Using the generated
root sequence, we used indel-seq-gen under a WAG þ C
(a) model (set a5 1.0) to independently simulate sequen-
ces of 1,000 sites based on the upper and lower subtrees in
figure 2. We then combined the two sequence data sets
from the two subtrees into one data set. Because indel-
seq-gen randomly assigns sites to different rates according

to the gamma distribution, the end result is that the two
independently simulated subtrees are evolved from the
same root sequence but display a bivariate rate shift at sites
between the subtrees. We repeated this procedure 100
times to generate 100 sets of bivariate rate data. For each
of these data sets, we used RAxML under the WAG þ C (a)
model to estimate an a by fixing the tree as shown in figure
2 while optimizing edge lengths. We then used the esti-
mated a and corresponding estimated trees to simulate
1,000 data sets of 1,000 sites under the WAG þC (a) model
with seq-gen. The three test statistics were calculated for
each of the bivariate data sets, and their RAS replicates and
the power of the tests were determined similarly as in the
covarion test.

Simulations under a Branch Length Mixture Model
To evaluate the powers of the three tests on data simulated
under a branch length mixture model, we used seq-gen to
simulate 100 data sets of 1,000 sites each under WAG þ C
(a) model (set a 5 0.5) with two equal partitions of sites
that have the same tree topology but different sets of edge
lengths for the left and right trees (fig. 3). We simulated
data using trees with 8, 16, 24, and 32 taxa, respectively.
For each data set, we used RAxML under the WAG þ C
(a) model to estimate a using a tree topology as shown
in figure 2 as fixed topology while optimizing the branch
lengths. We then used the estimated a and corresponding
estimated tree to simulate 1,000 data sets of 1,000 sites un-
der the WAG þ C (a) model. The three test statistics were
calculated for each of the branch length mixture data, and
their RAS replicates and the significance of the tests were
determined similarly as in the covarion test.

Furthermore, for the trees harboring 8 and 16 taxa, we
subselected a taxon in each clade to have a different edge
length than the rest of the taxa in the same clade. Figure 4
shows a pair of subselected trees of eight taxa that are dif-
ferent from the balanced tree shown in figure 3. We used
the same procedure to apply the three tests on data sim-
ulated under this kind of trees.

Simulations under Lineage-Specific Variation in Proportion
of Variable Sites (pvar)
To investigate whether the w, w#, and correlation tests can
be used to detect this type of heterotachy, we used Line-
ageSpecificSeqGen (Shavit Grievink et al. 2008) to simulate

FIG. 3. One pair of the simulating trees for a mixed branch length model. Here a tree of four taxa per group is shown. Other simulating trees
have 8, 12, and 16 taxa per group. The length of the central edge connecting the two groups is set to 1.0. The short and long edges in the two
groups have a length of 0.1 and 0.7, respectively.

FIG. 2. One of the four simulating trees with two ‘‘star’’ subtrees
separated by an internal edge. Here a tree of 15 taxa per group is
shown. Other simulating trees have 5, 10, and 20 taxa per group. b is
the length of the central edge connecting the two subtrees, which is
set to 1.0; a is the length of the edges within the two subtrees,
which is set to 0.1, 0.3, 0.5, and 0.7, respectively, for different
simulations.
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100 data sets of 16 taxa each in which two nonsister lin-
eages have correlated changes in their pvar (the tree is
shown in fig. 2 of Shavit Grievink et al. 2008). As specified
in Shavit Grievink et al. (2008), we simulated 10,000 sites for
each data set setting the two events pvar 5 0.2 and the
proportion of invariable sites at the root node of the tree
(pinv) 5 0.8, WAG þ C (a5 0.5) using four rate categories.
For each data set, we used RAxML to estimate a tree under
WAG þ C (a) þ I model with four rate categories by fixing
the topology as the simulating tree. Using each of the 100
estimated a’s, pinv’s, and corresponding trees, we simulated
1,000 data sets of 10,000 sites under the WAG þ C (a) þ I
model. The three test statistics were calculated for each of
the pvar change data, and their RAS replicates and the
significance of the tests were determined similarly as in
the covarion test.

Four Empirical EF-Related Data Sets
To investigate the performance of the w, w#, and correla-
tion tests on real data, we considered four previously stud-
ied sequence data sets of EFs. The first data set consists of
orthologous sequences of a 17-taxon subtree of eukaryotic
elongation factor 1a (eEF-1a) and a 13-taxon subtree of
bacterial EF-Tu and has 380 aligned sites (Gaucher et al.
2001). The second data set of EF-1a has 349 sites and
24 taxa including 2 archaeal taxa and 22 eukaryotic taxa,
3 of which are Microsporidia (Inagaki et al. 2004). The third
data set consists of orthologous sequences of a 27-taxon
subtree of eEF-1a and a 13-taxon subtree of archaeal EF-
1a (aEF-1a). The fourth data set is a data set of paralogous
sequences consisting of a 13-taxon subtree of Hsp70
subfamily B suppressor 1 (HBS1) and a 17-taxon subtree
of eukaryotic release factor (eRF3). The third and fourth
data sets have 269 sites (Susko et al. 2002). For each EF-
related data set, we used RAxML to infer a phylogenetic
tree under the WAG þ C (a) model. We then used the
estimated tree and the a shape parameter to simulate
1,000 data sets with the same sequence length as the orig-
inal EF-related data under the RAS model. For the second
data set (Microsporidia EF data), a Microsporidia–Archaea
clade tree, as expected, would be estimated under the

gamma model, which was slightly different from the true
tree that unites the Microsporidia with fungi. We used both
the wrong and the true trees for simulating the 1,000 rep-
licates of the RAS data. The w, w#, and Pearson correlation
coefficients were calculated for each of the original data
sets, and corresponding 1,000 RAS replicates and the
significance of the tests were determined similarly as above.
The four data sets are available at http://www.mathstat.dal.
ca/;hcwang/Procov/.

Results

Performance of the Covarion Test in Simulation
Figure 5A–C shows the type I error rates of the w, w#, and
the correlation tests for data simulated under the RAS
model and the power of the tests to distinguish the general
covarion model from an RAS model. The type I error rates
for all tests are close to the target of 5% (the a level)
regardless of the number of taxa per clade and the edge
lengths within the subtrees. Keeping the internal edge
connecting the two subtrees b the same (b5 1.0), for very
small edge lengths within the subtrees (a5 0.1, 0.3), w had
good power to distinguish COV-simulated data from RAS
for small and large trees. However, when a was increased to
0.5 and 0.7, w had a good power only when the simulating
tree was small (i.e., 5 and 10 taxa per clade) and had very
low power when the simulating tree had 15 or 20 taxa per
clade. In contrast, both the w# and the Pearson coefficient
had very good power regardless of the number of taxa and
edge length a. The correlation test essentially had 100%
power for the data simulated under the various settings.

For the analyses of the simulated very large data set (150
taxa per clade and 1,000 sites) under the general covarion
model, on average it took 2.5 min to complete an analysis
on a 3-GHz Dual Xeon E5450 with 16 GB RAM, which in-
cluded the bootstrapping of 1,000 simulated RAS data sets
of the same size. The results showed that both the w and
the w# tests had reduced power to reject RAS. The w test
had a power of 11% for the edge length a5 0.1, and it was
further reduced to 0% and 2% for a 5 0.3 and 0.5. Com-
pared with the w tests the power of the w# tests was higher,
being 65%, 5%, and 49% for a 5 0.1, 0.3, and 0.5,

FIG. 4. Subselecting taxa for the mixed branch length model. Here a pair of eight-taxon trees is shown in which one taxon has a different edge
length than the other three taxa in the same clade. In another simulation setting, a 16-taxon tree is subselected so that 1 taxon has different
edge length than the other 7 taxa in the same clade. The length of the central edge connecting the two groups is set to 1.0. The short and long
edges within the two groups have a length of 0.1 and 0.7, respectively.
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respectively. However, both the w and the w# tests had el-
evated power (38% and 84%, respectively) for a5 0.7. This
may seem surprising as with smaller numbers of taxa,
power generally decreased with increasing a. The reason
for the elevated power here is that for a very large number
of taxa and large edge lengths within the groups, almost all
sites become variable in the two groups (i.e., type 5 sites)
and there are very few type 3 or 4 sites. Indeed, the distri-
bution of the w values for data simulated under the RAS
model is within a narrow range close to 0. Some of the w
values for data simulated under the COV model become
negative. These combined effects led the w test to reject
RAS and thus have an unexpectedly higher power for
the a 5 0.7 cases. The w# test had a similar problem;
the values of w# became negative for the COV- and
RAS-simulated data leading to the rejection of RAS. Despite
these difficulties associated with the w and w# tests when
applied to the very large data sets, the correlation test,
however, remained highly capable with its power reaching
100% for the 300-taxon data and all edge lengths used in
the simulations.

Performance on Data Simulated under the Bivariate
Rate Model
For data simulated under the bivariate rate model, both w#
and the correlation tests had perfect power regardless of

the number of taxa and the edge length a. The w test
for the bivariate data (fig. 6), in general, had better power
than for the covarion simulated data. It had perfect power
for smaller edge lengths within the subtrees (a 5 0.1, 0.3)
and smaller trees (less than 15 taxa per clade). For the 20
taxa per clade tree, its power was reduced to 83% when the
edge length a was 0.7, but this is still much better than the
power observed for the COV-simulated data (comparing
with fig. 5).

Performance on Data Simulated under the Mixed
Branch Length Model
For the data simulated under the tree shown in figure 3,
none of the three tests (w, w#, and the Pearson correlation)
had any power to reject RAS regardless of the number of
taxa used in the simulation. For this result, we used the a
estimated from the simulated mixed branch length data to
generate a null RAS distribution. We also separately esti-
mated an a from each of the two subtrees for the simulated
data and then averaged them to get an average a. Using this
average a to simulate the RAS distribution, there was still
no power to reject the null RAS distribution for all the three
tests on this kind of data.

For the mixed branch length data with taxa subselec-
tion (see Methods), the power of rejecting RAS did in-
crease and was dependent on the size of the simulating
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FIG. 5. The type I error rates of the three test statistics for data simulated under the RAS model (lower panel of lines) and the power of the tests
for data simulated under a general covarion model (upper panel of lines). (A) w test; (B) w# test; (C) the correlation test. The simulating tree
(see fig. 2) has 5, 10, 15, and 20 taxa per clade and a terminal edge length a5 0.1, 0.3, 0.5, and 0.7, respectively. The power of correlation tests is
always 100% for different sizes of data, merging all lines into a single line (blue line in C). (B) Also shows some overlapping of the lines due to
the same power for different size of the data.
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tree. For the eight-taxon trees with subselected taxa (fig.
4), the w, w#, and correlation tests had a power of 2%, 26%,
and 88%, respectively. For the 16-taxon trees with subse-
lected taxa, the power of the w test increased to 82%,
whereas both the w# and the correlation tests reached
a perfect power.

Performance on Data Simulated under Lineage-
Specific Variation in pvar

We used LineageSpecificSeqGen to simulate 100 data sets
of 16 taxa based on the tree as shown in figure 2 of Shavit
Grievink et al. (2008), in which two non-sister lineages have
correlated changes in their pvar. Comparing the w, w#, and
the Pearson coefficients for these data sets and correspond-
ing WAG þ C (a) þ I replicated data sets (without pvar

change), all three tests always rejected RAS þ I for the
changed pvar data sets. As a control, for data sets simulated
under a WAG þ C (a) þ I model, which only lacked the
heterotachy component of the changed pvar events, the

three tests were not able to reject RAS þ I in 99, 98,
and 92 of 100 cases, respectively.

Empirical Data: The Four EF-Related Data Sets
A previous study based on examining rate difference be-
tween the eEF-1a subtree and bacterial EF-Tu subtree in-
dicated that the EF-1a/EF-Tu data set evolved under
a covarion-like process (Gaucher et al. 2001). This was fur-
ther verified by direct covarion-based modeling with PRO-
COV (Wang et al. 2009). Here we applied the w, w#, and
correlation tests to the data and found that all tests re-
jected RAS with high probability (table 2).

The Microsporidia EF-1a data set is one of the prime
examples showing that discrete rate shifts in some lineages
can cause a long branch attraction bias in phylogenetic re-
construction (Inagaki et al. 2004). It is interesting to see
whether the tests developed here can detect heterotachy
for this EF-1a data set in the clade of Microsporidia versus
the other eukaryotic and archaeal clades. Using either the
true Microsporidia–Fungi clade tree or the incorrect Micro-
sporidia–Archaea clade tree of EF-1a to simulate null dis-
tributions of the test statistics under RAS, the w test was
not able to reject RAS (P 5 0.16 and 0.21, respectively,
based on the two competing trees), but the w# test rejected
RAS (P 5 0.05 and 0.05, respectively) and the correlation
test also rejected RAS (P5 0.00 and 0.00, respectively). This
example shows that the w# and correlation tests have more
power in detecting heterotachy than the original w test for
the Microsporidia EF data.

Based on a bivariate model, Susko et al. (2002) designed
maximum likelihood–based orthogonal regression and
parametric bootstrapping methods to analyze rate differ-
ences in the eEF-1a and aEF-1a data set and in the paral-
ogous HBS1 and eRF3 data set. They found that there was
a significant rate difference between the two subtrees of
the eEF-1a and aEF-1a under both methods, whereas a mar-
ginally significant rate difference was detected in the sec-
ond data set (HBS1 and eRF3) only with the parametric
bootstrapping method. Here we applied the w, w#, and
the correlation tests to the two data sets to distinguish
them from null distributions of the three test statistics
for data simulated under an RAS model. For simulating
the null RAS distributions, we used the a parameter esti-
mated from the total data sets or the average a from the
two subtrees for each data set, respectively. Using either a
for simulations, both w and w# tests were not able to reject
RAS for both data sets (see table 2 for P values). The

Table 2. The w, w#, and Correlation Tests on Four EF-Related Data Sets

Data Set Number of Taxa in Clade 1 Number of Taxa in Clade 2 Number of Sites

P Value of Null Hypothesis
(RAS)

w w# Pearson

EF-Tu/EF-1a 13 bacteria 17 eukaryotes 380 0.002a 0.00a 0.00a

EF-1a 3 Microsporidia 19 eukaryotes and 2 archaea 349 0.16 0.05a 0.00a

EF-1a 13 archaea 27 eukaryotes 269 0.73 0.49 0.00a

HBS1/eRF3 13 HBS1 17 eRF3 269 1.00 1.00 0.42

a The test rejected RAS.
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FIG. 6. Power of the w tests for data simulated under the bivariate
rate model. The gamma shape parameter a 5 1.0 was used in the
simulations. The simulating tree (see fig. 2) has 5, 10, 15, and 20 taxa
per clade and a terminal edge length a 5 0.1, 0.3, 0.5, and 0.7,
respectively. Because the power for the 10 and 15 taxa per clade
trees are all same (100%) for a 5 0.1 and a 5 0.3, the black line is
overlapped with the red line and becomes invisible.
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correlation test rejected RAS for the third data set (eEF-1a
and aEF-1a) but not the fourth one (HBS1 and eRF3).

Discussion
The foregoing results on both simulated and real data sug-
gest that the w test sometimes lacks the sensitivity required
to detect heterotachy when there are large numbers of taxa
in two monophyletic groups. It is intriguing to note that
Ané et al. (2005) found that the power of the w-based co-
varion tests increases with the number of the taxa per
clade. However, their simulations only considered small
data sets (2–16 taxa per clade). Our simulations show that
it is for the biggest data sets (20 taxa per clade) that the w
test has the least power. Furthermore, the power is espe-
cially low when the edge lengths within the subtrees are
large. This is expected as in these cases both groups will
likely vary at most sites. Therefore, few sites will show
the N3 and N4 patterns leaving the w statistic powerless.
The w# test, however, incorporates the entropy difference
at sites so that covarion sites which vary in both groups can
be detected and is thus still able to detect non-RAS pro-
cesses in data of large numbers of taxa. The correlation
method makes full use of the variability at sites between
two subtrees and has even more power to detect non-
RAS processes in large and very large data sets (greater than
300 taxa) than the w# test.

The w test was originally designed to distinguish the RAS
process and the classic covarion process envisioned by
Fitch and Markowitz (1970) and modeled by a Markov
modulated rate-switching process (Tuffley and Steel
1998). In this study, we show that this test and its improved
form (the w# test) also can detect other forms of hetero-
tachy modeled by the general covarion model (Wang et al.
2007) and bivariate rate shift on splits (Susko et al. 2002).
Under the bivariate rate shift model considered here, rates
of the two subtrees are independently assigned, and thus
less correlation between the rates at sites of the two sub-
trees is expected than from RAS-simulated data. This
causes the correlation test to have very good power in dis-
tinguishing between bivariate data and RAS data. For the w
test, increasing the a shape parameter used in simulating
bivariate data will lead to low power. This effect, however,
can be improved by using an a shape parameter derived by
averaging a estimates from the two subtrees of the bivar-
iate data to simulate the null RAS distribution for the w
statistic (data not shown). The w, w#, and correlation tests,
however, cannot distinguish data simulated under one kind
of the mixed branch length models (fig. 3) from RAS-gen-
erated data, and this cannot be remedied by using the av-
eraged a approach. This is an example of a situation in
which rates are varying across both lineages and sites,
but the overall variation within groups does not show
change across sites except for that due to the RAS distri-
bution. It is exactly the type of setting where tests of this
type will perform poorly. However, by subselecting taxa in
the branch length mixture model (fig. 4), the power of the
three tests and especially the w# and correlation tests

increases dramatically, suggesting that, with some data ex-
ploration through taxa subselection, these tests can be
used to detect heterotachy. Exactly how taxa should be
subselected in the absence of prior information regarding
partition-specific branch lengths remains a question for fu-
ture research.

Unlike the branch length mixture model, both the co-
varion and the bivariate rate models are time-reversible sta-
tionary models of heterotachy that are expected to
maintain a constant proportion of variable sites in all evo-
lutionary lineages. However, this assumption may be overly
simplistic when considering real data as proportions of vari-
able sites (pvar) have been shown to vary in different line-
ages (Lockhart et al. 2006). This ‘‘changing pvar effect’’ has
garnered a lot of attention with respect to the accuracy of
phylogenetic inference methods in recent years (Gruenheit
et al. 2008; Shavit Grievink et al. 2008, 2010). The simulation
results suggest that the w, w#, and correlation tests can ef-
fectively detect heterotachy in data that has lineage-spe-
cific changes in proportion of variable sites. Indeed, the
lineage-specific pvar change in nonsister lineages in fact cor-
responds to a special case of the mixed branch length
model with taxa subselection which, as discussed above,
is shown to be detectable with the statistical tests intro-
duced here. Although it is beyond the scope of this study,
it will be of interest to investigate how these tests perform
on different parameter settings for the changed pvar model
and on more complex types of heterotachy such as having
a combination of a rate-switching covarion process as well
as changes in proportions of variable sites in the data.

One criticism of the w# and site entropy correlation tests
as well as the original w test is that they do not explicitly
account for the tree topology and edge lengths, which is
indeed a weakness of the methods. However, by focusing
on several potential clades of interest, these tests can pro-
vide a very fast way to detect heterotachy for any size of
data, and the parametric bootstrapping method for obtain-
ing the null distribution appears to in part control for to-
pology and edge length effects. In terms of speed, covTests
can analyze the simulated data sets of 300 taxa and 1,000
sites in 2.5 min on average on a computer with 3 GHz Intel
Xeon processor and 16 GB RAM, which includes the boot-
strapping approach. This is considerably faster than likeli-
hood-based approaches, such as the PROCOV, Checkcov
(Pupko and Galtier 2002), or Bivar (Susko et al. 2002). Fur-
thermore, it appears that there is a good correlation be-
tween the site entropies and the site rates estimated
with maximum likelihood. For example, we obtained the
site rates estimated with Dist_Est (Susko et al. 2003) for
the EF-1a/EF-Tu data and found them to be highly corre-
lated with the site entropies (R 5 0.85). The correlation
between the site rates and entropies for the EF-Tu subset
and for the EF-1a subset was even higher (R 5 0.94 and
0.93, respectively). This high correlation may explain why
the site entropy correlation test has better power than
the w or w# tests in detecting heterotachy in the simula-
tions and the EF data. Finally, the counting methods used in
the calculation of w, w#, and site entropies make no
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distinction between the amino acid types, for instance, the
variability of a site containing valine, leucine, and isoleucine
will be treated same as valine, cysteine, and lysine. One way
to account for differences in amino acid types is to recode
the amino acids according to physicochemical properties.
We have applied a recoding method (Susko and Roger
2007), based on Dayhoff physicochemical groups, into
the w, w#, and Pearson correlation analyses of several EF
data sets. This indeed improved the power of the w tests
but resulted in little change or slightly worse power for
the w# and correlation tests.
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