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Abstract

Standard protein phylogenetic models use fixed rate matrices of amino acid interchange derived from analyses of large
databases. Differences between the stationary amino acid frequencies of these rate matrices from those of a data set of
interest are typically adjusted for by matrix multiplication that converts the empirical rate matrix to an exchangeability
matrix which is then postmultiplied by the amino acid frequencies in the alignment. The result is a time-reversible rate
matrix with stationary amino acid frequencies equal to the data set frequencies. On the basis of population genetics
principles, we develop an amino acid substitution-selection model that parameterizes the fitness of an amino acid as the
logarithm of the ratio of the frequency of the amino acid to the frequency of the same amino acid under no selection. The
model gives rise to a different sequence of matrix multiplications to convert an empirical rate matrix to one that has
stationary amino acid frequencies equal to the data set frequencies. We incorporated the substitution-selection model
with an improved amino acid class frequency mixture (cF) model to partially take into account site-specific amino acid
frequencies in the phylogenetic models. We show that 1) the selection models fit data significantly better than corre-
sponding models without selection for most of the 21 test data sets; 2) both cF and cF selection models favored the
phylogenetic trees that were inferred under current sophisticated models and methods for three difficult phylogenetic
problems (the positions of microsporidia and breviates in eukaryote phylogeny and the position of the root of the
angiosperm tree); and 3) for data simulated under site-specific residue frequencies, the cF selection models estimated
trees closer to the generating trees than a standard D model or cF without selection. We also explored several ways of
estimating amino acid frequencies under neutral evolution that are required for these selection models. By better
modeling the amino acid substitution process, the cF selection models will be valuable for phylogenetic inference and
evolutionary studies.

Key words: selection, amino acid substitution, maximum likelihood, site-specific frequencies, mixture model, molecular
phylogenetics.

Introduction
Markov models of protein sequence evolution usually use an
empirical rate matrix, Q, of instantaneous rates of exchange
between amino acids to compute the probability of transition
from one amino acid to another over any given evolutionary
distance. The rate matrix Q is determined from a large data-
base, and a number of such matrices exist including the PAM,
JTT, WAG, and LG matrices (Dayhoff et al. 1978; Jones et al.
1992; Whelan and Goldman 2001; Le and Gascuel 2008).
These empirical rate matrices are derived in such a way as
to be time reversible: �i Qij =�j Qji, where �j is the stationary
frequency of the amino acid j. A rate matrix and its corre-
sponding �j profile are often combined with a discrete D rate
mixture model to account for the rate heterogeneity among
the alignment columns.

The stationary frequency �j is approximately the same as
the frequency of the amino acid j over the large number of
protein data sets that were used to derive the rate matrix. In
many cases, these are not very close to the observed frequen-
cies for the data set of interest. To adjust for this, a variant of

this scheme, termed +F in phylogenetic models, sets the
stationary amino acid frequencies to those observed in the
data under analysis (Cao et al. 1994). Given the rate matrix, Q,
for the empirical model, the usual adjustment for data set
frequencies first determines what is commonly referred to an
exchangeability matrix, R, through Rij = Qij/�j. The rate matrix
for the +F model is then taken as Qij/ Rij �j

(D)
, where �j

(D) is
the frequency of amino acid j for the data set and the row
sums in Q are zeros. Here, as throughout the article, the
constant of proportionality is determined from the constraint
that �

P
�j

(D) Qjj = 1, which ensures that edge lengths are
interpretable as expected numbers of substitutions per site.
The +F method generally fits the data better than the model
that uses the equilibrium frequencies of the protein substitu-
tion model and is widely used.

The foregoing +F method gives stationary frequencies
equal to the data set frequencies while maintaining time re-
versibility. However, it is not the only way to manipulate the
rate matrix to satisfy these conditions. For example, the
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generalized weighted frequency ( +gwF) model of Goldman
and Whelan (2002) gives stationary frequencies equal to the
data set frequencies but multiplies the exchangeabilities by
the ratio of the frequencies of the target amino acids (�j) to
the source amino acids (�i):

Qij /
�1�f

j

�f
i

Rij

Here, f is a parameter that controls the relative contribu-
tions of the frequencies of the source and target residues
and was estimated through maximum likelihood (ML).
When f = 0, Qij is reduced to the standard +F variant of
the Q matrix.

The +gwF model was found to fit 70% of the 182 test data
sets better than the +F model (Goldman and Whelan 2002).
Both +F and +gwF methods provide somewhat arbitrary
ways of adjusting for different amino acid frequencies in a
given data set. Moreover, these models do not explicitly
adjust for selection in terms of the relative fitness of the var-
ious residues at sites. Different sites in a protein are selected to
have different structural or functional roles resulting in differ-
ent substitution patterns at individual positions. For instance,
isoleucine is commonly found in buried b-stranded environ-
ments in which it is often substituted by valine and leucine.
However, in a context where the position is functionally con-
served with isoleucine, it is less likely that isoleucine can be
substituted by these residues (Sjölander et al. 1996). Similarly,
phenylalanine seen in a context that requires an aromatic
residue is often found to be substituted by tyrosine or tryp-
tophan, whereas under a context requiring a large nonpolar
residue, the substitutions with aliphatic or other large residues
are common. This site-specific amino acid substitution pat-
tern is not modeled by the equilibrium amino acid frequen-
cies from the protein model nor by the +F or +gwF variants.

Halpern and Bruno (1998) first applied population genetics
theory to derive a rate matrix for the codon substitution
process, which combines the nucleotide mutation probabili-
ties with the fixation probabilities of the codons at individual
sites. Their model was further developed to detect selective
strengths on synonymous codon usage (Yang and Nielson
2008), to estimate the distribution of selection coefficients
from phylogenetic data (Tamuri et al. 2012), and to study
the heterogeneity of amino acid fitness profiles among se-
quence sites (Rodrigue et al. 2010; Rodrigue 2013). Holder
et al. (2008) explicitly studied the impact of the Halpern–
Bruno (HB) model on phylogenetic estimations and found
standard protein models had difficulty recovering the correct
phylogenies when the data were simulated for the site-spe-
cific amino acid frequencies under the HB model especially
when the simulated data were divergent and sequences were
short. Other early work also introduced fitness parameters in
amino acid sequences to study protein evolution, but the
fitness was not modeled in terms of the mutation rates
and amino acid frequency profiles and was not site specific
(Dimmic et al. 2000). In this study, we introduce new substi-
tution-selection models for protein sequences combined with
mixture models of class frequency profiles of amino acid sites

(Wang et al. 2008) (extended to 9 and 20 site classes). Our
tests on empirical and simulated data show that these amino
acid selection models can improve the ML estimation of
phylogenies.

New Approaches
Following Halpern and Bruno (1998) as well as Yang and
Nielson (2008) and Rodrigue et al. (2010), we define the fit-
ness of amino acid j in a protein sequence alignment as the
log of the ratio of the frequency of the amino acid (�jÞ to the
frequency of the same amino acid under no selection ð�j0Þ:

Fj ¼ log
�j

�j0
. It can be shown, based on population genetics

theory (Kimura 1962), that the population scaled selection

coefficient Sij = 2N sij = log
�j

�j0
� log �i

�i0
= Fj � Fi (see also

Rodrigue et al. 2010). The rate matrix for residue changes
under selection, QðsÞij , is a product of a rate matrix under no
selection, Qð0Þij , and the probability of fixation of mutant j
given i, fij.

QðsÞij / Q 0ð Þ
ij fij ¼ Q 0ð Þ

ij

Fj � Fi

1� e� Fj�Fið Þ

¼ QðMÞij

1� e�ðF
ðMÞ
j
�F
ðMÞ
i
Þ

FðMÞj � FðMÞi

Fj � Fi

1� e� Fj�Fið Þ

where QðMÞ is any standard amino acid substitution rate
matrix such as LG and FðMÞj satisfies the Fj formula but
with �j replaced by the equilibrium frequency �ðMÞj from
the rate matrix QðMÞ. Three simple �j0 profiles are proposed
and tested in this article: the first one results from equal
codon frequencies of all 61 sense codons; the second is also
based on equal codon frequency but adjusts for nucleotide
compositional bias manifested by the ratio of amino acids
encoded by GC-rich codons (G, A, R, and P) to those
encoded by AT-rich codons (F, Y, M, I, N, and K); and the
third one is determined from the nucleotide frequencies at
the third codon positions. We call the selection models
under the three �j0 profiles as selection 1, selection 2, and
selection 3, respectively (sel1, sel2, and sel3 for short). See the
Materials and Methods section for additional details about
the derivation of QðsÞij and the estimation of �j0 .

Given QðsÞij , the Q matrix adjusted for selection effects, one
can estimate the phylogenies under the standard ML frame-
work (Felsenstein 1981). Furthermore, we combine a class
frequency mixture model (Wang et al. 2008) with the selec-
tion model to take into account site-specific substitution
patterns. In addition to the original four site classes (cF4)
introduced in Wang et al. (2008), we utilized two sets of
previously published amino acid frequency profiles: the nine
component profiles of Sjölander et al. (1996) and the 20 com-
ponent profiles of Quang et al. (2008). The corresponding cF
models using these profiles are referred to as cF9 and cF20,
respectively, to distinguish them from the original cF4 model.
Each of the three mixture models contains an F component
(the average amino acid frequency of the alignment). The F
component in the cF models may be adjusted for selection
effects as introduced earlier; the resulting cF models with
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selection are called cF4sel, cF9sel, and cF20sel, respectively,
where only the F component is under selection. The base
model with a single rate matrix and +F component is
called Fsel, when selection is implemented. Moreover, as de-
fined earlier the various selection models can be sel1, sel2, or
sel3 (e.g., the cF4sel model can be cF4sel1, cF4sel2, and
cF4sel3) depending on how the neutral amino acid frequency
profile (�j0Þ is estimated.

Results and Discussion

Model Test: 21 Empirical Data Sets

We first applied the Fsel1 and Fsel2 selection models to the
21 protein family data sets and calculated the maximum
log-likelihood score (ln L) of the data sets for the trees pre-
estimated under a standard model without adjusting for se-
lection (the base model LG + F + D). For these models, sel1
determines the neutral amino acid frequencies implied by
equal codon frequencies, whereas sel2 further adjusts for
the GARP/FYMINK ratio. Both Fsel1 and Fsel2 obtained
larger ln L scores in 18 data sets than the base model.
Because the Fsel1 model does not increase the number of
free parameters relative to the base model, the likelihood
gains indicate that Fsel1 fits better than the base model with-
out selection in the majority of the data sets. Fsel2 has one
more parameter than the base model. Still in all but three
data sets that both Fsel1 and Fsel2 had lower corrected
Akaike information criterion (AICc) than the base model.
Comparing Fsel2 and Fsel1, the ln L scores were higher in
17 out of the 21 data sets for Fsel2, and two of them gave
lower AICc scores for Fsel2, or alternatively, were significant
using a likelihood ratio (LR) test (�2

1,0:05 = 3.841).
Next we applied the cF mixture models (cF4, cF9, and

cF20) and their corresponding selection models to estimate
the ML scores for the 21 data sets. For comparison, an em-
pirical profile mixture model (CAT-C20 or CAT20; Quang
et al. 2008) was also used to analyze the data sets. Figure 1
right panel shows a boxplot of the log-likelihood difference
(�ln L) between the various models and the base model, and
figure 1 left panel shows a boxplot of per site AICc differences
(base – test model) for the 21 data sets. Compared with the
base model, the likelihood increase for all data sets was very
significant for the three cF mixture models (cF4, cF9, and
cF20) and their counterparts that included selection on the
F component (LR test P< 0.001). They also had smaller AICc

scores than the base model for all data sets. Because the three
cF models are not nested, the AICc were used to compare cF4,
cF9, and cF20. Both cF9 and cF20 achieved smaller AICc scores
than cF4 for all data sets; cF20 had smaller AICc scores than
cF9 for 15 data sets, whereas cF9 had smaller AICc scores in
the remaining six data sets. All together this indicates the
mixture profiles with more components of amino acid fre-
quency vectors tend to improve model fit, consistent with
the findings in Quang et al. (2008). CAT20, however, gave
higher likelihoods than the base model in just about half
of the data sets (12 out of 21) and the AICc indicated it
performed better than the base model in only 10 data sets.
This agrees with Le et al. (2008), which found CAT20 was no

better than the basic LG + F + D especially for unsaturated
data sets. Adding a + F to the CAT20 model (CAT20 + F) did
not improve performance. In fact the estimated weights for
the F component were less than 0.05 for all but one data set.
However, when the proportional exchangeabilities of the
standard CAT20 model (Quang et al. 2008) were replaced
by the LG exchangeabilities, a model we called CAT20 + LG
model, estimated likelihoods were significantly better than
under the base model for all data sets (data not shown).
Therefore, it appears valuable to combine the C20 profiles
with an empirical protein matrix (such as LG) instead of a
protein matrix under a Poisson model.

The cFsel1 models have the same number of parameters as
the corresponding cF models, so comparison of the likeli-
hoods can be made directly. For instance, cF4sel1 gave
larger likelihoods than cF4 in 17 data sets; both cF9sel1 and
cF20sel1 models gave larger likelihoods than cF9 and cF20 in
15 data sets. Therefore, each of the cFsel1 models fit better
than the corresponding cF model in the majority of the data
sets. Comparing Msel2 with Msel1 for the same model M
(M being cF4, cF9, or cF20), Msel2 gave higher ln L’s in
most of the cases. For example, cF4sel2 showed higher ln L
than cF4sel1 in 17 data sets; cF9sel2 had better ln L than
cF9sel1 in 16 data sets; and cF20sel2 was better than
cF20sel1 in 15 data sets. However, in all but one of the
cases, the likelihood improvements were not sufficiently
large to overcome the cost of an additional parameter in
the sel2 models according to the AICc.

It should be noted in the above applications, the cFsel
models, like the Fsel models, only had the F component
(i.e., the average amino acid frequency of the data set)
placed under selection. In principal, one can also put the cF
components under selection using similar equations as equa-
tions (5) and (6) to adjust the Q matrices. We found this did
not always increase model fit. For example, when we modified
the cF20sel model, so that all 20 components and F were
under selection, higher likelihood scores than in the cF20
model were obtained in only 10 data sets. By comparison,
the cF20sel model with only F under selection achieved larger
likelihood scores than cF20 in 15 data sets. The main reason is
probably numerical instability, as the Q matrix adjustments
involve in log ratio of the frequency vectors (eq. 4), and some
of the cF profiles contain very small frequencies for certain
amino acids, which make them sensitive to the sparseness of
site pattern in the aligned sequence data. Therefore, the cF
selection models introduced throughout the article, as imple-
mented in QmmRAxML (version 2.0), are based on only the F
component being placed under selection.

Figure 2A shows the log-likelihood gains from the eight test
models (Fsel1, cF4, cF4sel1, cF9, cF9sel1, cF20, cF20sel1, and
CAT20) relative to the base model plotted against a measure
of the information content of the 21 data sets. The informa-
tion content of a data set is taken as the product of the
number of taxa, the aligned sequence length, and the
length of the tree estimated under the base model. This quan-
tity captures the total amount of sequence “change” in the
data set. Positive relationships between the ln L gains and the
information content of the data sets are evident in each
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model. Indeed, the correlation coefficients between the two
variables are 0.46 (Fsel1), 0.42 (cF4), 0.53 (cF4sel1), 0.67 (cF9),
0.68 (cF9sel1), 0.62 (cF20), 0.63 (cF20sel1), and 0.24 (CAT20).
The Fisher transformation test of correlation coefficient (r)
differing from 0 gave P values less than 0.05 in all cases but cF4
and CAT20. This indicates that for most of the models, the
greater the information content in a data set, the larger the
expected increase in likelihood compared with the base
model. Significant correlations between the ln L gains and
the information content were also obtained for all sel2
models (Fsel2, cF4sel2, cF9sel2, and cF20sel2) relative to the
base model. The likelihood increases of all cF selection models
over corresponding cF models (e.g., cF4sel1 or cF4sel2 vs. cF4)
were not significantly correlated with the information con-
tent (r< 0.36, P> 0.05).

The correlation between the average branch length in each
data set and the ln L gains from the test models relative to the
base model were all negative (r =�0.49 to �0.12) except in
Fsel1 and Fsel2 (r = 0.33 in both cases). The Fisher transfor-
mation test for correlation gave P values greater than 0.05 in
all cases except in CAT20 where a significantly negative cor-
relation was observed (r =�0.49; P< 0.05). However, the ln L

differences between the cF selection models and correspond-
ing cF models (e.g., cF4sel1 vs. cF4) were all positively corre-
lated with the average branch lengths with cF4sel1, cF4sel2,
cF20sel1, and cF20sel2 being significant (r = 0.44 to 0.46,
P< 0.05). Figure 2B plots the ln L differences in cF4sel1 and
cF20sel1 (relative to cF4 and cF20, respectively) against the
average branch length in each data set. Very similar results
appeared if plotting the ln L gains in cF4sel2 and cF20sel2
(relative to cF4 and cF20, respectively) against the average
branch lengths, suggesting that greater gains may be expected
with more divergent sequence data.

Tree Estimation

Previously we showed that the cF model accounts for site-to-
site heterogeneity in the substitution process and improves
tree estimation by reducing the influence of artifactual long
branch attraction (LBA) bias (Wang et al. 2008). For example,
for the multigene microsporidia data (Brinkmann et al. 2005),
the cF4 model estimated a higher likelihood score for the
microsporidia-fungi (MF) clade tree than the microsporidia-
archaea (MA) clan tree. The latter tree was often inferred
under the conventional model employing a single rate
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differences (the base model� test model) for the 21 data sets. The base model is LG + F + D, and the test models are shown on the y axis.
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matrix due to the LBA artifact, whereas an MF clade tree was
inferred under more sophisticated models and methods that
could reduce the LBA effect (Brinkmann et al. 2005). Here, we
reanalyzed this data set under the cF4, cF9, cF20, and their
selection models as well as the base model (LG + F + D), Fsel,

and CAT20. The amino acid profile under no selection was
based on equal codon frequencies with the GARP to FYMINK
ratio adjusted. Table 1 lists the ln L scores for the MF tree and
the ln L differences between the MF and MA trees for the no-
selection and selection models. All cF models and cFsel2
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Lo
g 

Li
ke

lih
oo

d 
D

iff
er

en
ce

-200

0

200

400

11.0 11.5 12.0 12.5

Fsel1 - Base cF4 - Base

11.0 11.5 12.0 12.5

cF4sel1 - Base cF9 - Base

cF9sel1 - Base

11.0 11.5 12.0 12.5

cF20 - Base cF20sel1 - Base

11.0 11.5 12.0 12.5

-200

0

200

400

CAT20 - Base

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−
20

0
20

40
60

80
10

0

cF4sel1 vs. cF4

●

●
●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●

●

●

●

0.05 0.15 0.25 0.35 0.05 0.15 0.25 0.35

0
10

20
30

40
50

cF20sel1 vs. cF20

Average Branch Length

Lo
g 

Li
ke

lih
oo

d 
D

iff
er

en
ce

FIG. 2. (A) The ln L differences between the test models and the base model (LG + F + D) plotted against the log information content
(taxa� sites� tree length). (B) The ln L differences between cF4sel1 and cF4 and between cF20sel1 and cF20 plotted against the average branch
lengths. Each dot is for a protein data set.

783

An Amino Acid Substitution Selection Model . doi:10.1093/molbev/msu044 MBE
 at D

alhousie U
niversity on M

arch 21, 2014
http://m

be.oxfordjournals.org/
D

ow
nloaded from

 

il
microsporidia-fungi
dataset
lnL
lnL
http://mbe.oxfordjournals.org/
http://mbe.oxfordjournals.org/


models estimated higher likelihoods for the MF tree, whereas
the standard D model with or without selection estimated a
higher likelihood for the MA tree. The CAT20 model also
estimated larger likelihood for the MF tree. Table 1 also
gives the P value of the KH test for the null tree (the MA
tree) under each model based on the difference in the esti-
mated site-wise log likelihoods between the null and alternate
trees. The cF9, cF20, and corresponding selection models, as
well as CAT20, strongly rejected the MA tree in favor of the
MF tree, whereas the base model with or without selection
supported the MA tree. Based on the corrected per-site AICc

scores in table 1, the cF20 and cF20sel models would be
considered the best-fitting models.

Table 1 further reports the estimated weights for the F
component in the cF4, cF9, cF20, and their corresponding
cFsel2 models, based on the MA tree (similar results were
obtained when the MF tree was used). The F component
weights for cF9 and cF20 are comparable and less than the
corresponding weight for cF4. This implies additional weight
is being placed on the cF9 and cF20 mixture components,
suggesting a substantial subset of sites are better modeled by
some of the additional cF9 and cF20 frequency profiles. The F
component weights for a given model are similar whether the
model includes selection or not. Thus, including selection
does not increase the number of sites attributed to the F
component class. Better fits are likely due to selection
better modeling the site patterns of the F component class.

A second phylogenomic data set we considered was the
Amborella chloroplast genome data (Leebens-Mack et al.
2005). These authors found that Amborella alone at the
base of angiosperm phylogeny (tree A) was supported by
the amino acid sequence data, whereas Amborella + water
lilies at the base of the flowering plants (tree B) was supported
by the nucleotide data. Table 2 lists the ln L scores for tree A
and the ln L difference between tree B and tree A under the
various models with a chloroplast-specific amino acid substi-
tution matrix (cpREV) (Adachi et al. 2000). The cpREV matrix
was used here in place of the LG matrix used previously as

it achieved higher ln L scores than LG or WAG for the same
model. For instance, the ln L of tree A under cpREV + F + D

was �175,584, much higher than �178,591 under
LG + F + D. The KH test was unable to reject any of the
two competing trees for each model listed in table 2. Tree
B was only marginally better supported by covarion model-
based ML estimations (Wang et al. 2007) and a more recent
study based on a much larger data set (Goremykin et al.
2013). Table 2 shows the cF20 and cF20sel2 models were
the best-fitting models according to AICc. Surprisingly,
CAT20 had the highest AIC score and was higher than the
base model. The reason may be that the CAT20 model uses a
proportional rate matrix for exchangeabilities that does not
fit the chloroplast data well.

Table 2 also lists the estimated weights for the F compo-
nent in the cF and cFsel2 models. As in the case of the
microsporidia data, the F component weights for cF9 and
cF20 are less than the F weight for cF4. Comparing the F
component weights under the cF models and those under
the corresponding cF with selection models, they are very
similar for cF4 ± sel2 and cF20 ± sel2, respectively. However,
a large difference (0.15) in the estimated F component
weights exists between cF9 and cF9sel2, which corresponds
to a better, lower AICc score in the cF9sel2 model (the per site
AICc difference is 0.05 between the two models).

Table 3 reports results for the protistan breviate data. Two
competing trees were recently estimated (Brown et al. 2013):
a BA tree, which put the breviate lineage sister to the apuso-
monads relative to the opisthokonts, was estimated under a
standard LG + F + D base model, whereas an OA tree, which
let the breviates splitting off before a sister clade of the
opisthokonts and apusomonads, was estimated under a
CAT-GTR + D model. All cF mixture models fit the data sig-
nificantly better than the base model. The cF selection models
had even higher ln L than corresponding models without
selection. CAT20 fit the data better than the base, Fsel, cF4,
and cF4sel2 models, but it was worse than the cF9, cF20, and
their selection models. The per site AICc scores demonstrated

Table 1. ML Estimations of the Microsporidia Sequence Data for Two Competing Trees.

Modela ln L of the
MF Tree

"ln L (MF
�MA Trees)

P*(MA Tree) AICc per Siteb No. of Model
Parameters

F Component
Weightc

LG + F (base model) �731688.61 �117.83 0.97 60.24 79 1.0

Base + sel2 �731002.66 �125.59 0.97 60.19 80 1.0

Base + cF4 �727360.77 7.72 0.44 59.89 83 0.67

Base + cF4 + sel2 �726869.82 3.84 0.23 59.85 84 0.68

Base + cF9 �721709.64 125.12 0.003 59.42 88 0.26

Base + cF9 + sel2 �721601.93 122.16 0.0 59.41 89 0.28

Base + cF20 �718325.89 156.13 0.0 59.14 99 0.27

Base + cF20 + sel2 �718215.49 154.56 0.0 59.14 100 0.28

Poisson + CAT20 �727747.48 135.86 0.0 59.92 98 NA

NOTE.—MF, microsporidia grouped with fungi; MA, microsporidia at the base of the eukaryotes close to the archaea species.
asel2 is the selection model with the neutral amino acid profile estimated from equal codon frequency with GARP/FYMINK adjustment.
bCorrected AIC score was calculated based on the MA tree. Almost identical AIC per site scores were obtained if using the MF tree in the calculation.
cWeight for the F component was calculated based on the MA tree. Similar weight was obtained for each model if using the MF tree in the calculation. NA, the F component is
not applicable for the model.

*P value from the KH test (Kishino and Hasegawa 1989). The null hypothesis is the indicated tree. Small P values suggest strong support for the other tree.
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the same trend as in previous examples with cF20 and cF20sel
being the best fitting model and the base and Fsel models the
worst fitting models. Furthermore, both cF9 and cF20, with or
without selection, achieved higher likelihood scores for the
OA tree than the BA tree (�ln L> 13.72 for the four cases).
The CAT20 had a �ln L of only 0.07, and the other models
had a negative �ln L. The OA tree was favored, although not
in a statistically significant manner according to the KH test,
under the cF9, cF20, and their selection models, whereas the
other models including CAT20 had less support for the OA
tree or supported the BA tree. Furthermore, as in the micro-
sporidia data, the estimated weights of the F component
(table 3) for cF9 and cF20 are comparable and less than the
corresponding weights for cF4, and the F component weights
for the cF models and the corresponding cFsel2 model are
also similar.

In the foregoing phylogenomics analyses, the cF models
(especially cF20 and cF9), with or without selection, estimated

the trees that are more consistent with those that were
inferred under advanced phylogenetic methods that
employ strategies such as adequate taxa sampling, removing
fast-evolving sites and utilizing sophisticated models to
handle among-site and among-lineage rate heterogeneities
(Brinkmann et al. 2005; Leebens-Mack et al. 2005; Wang
et al. 2007; Lartillot et al. 2009; Brown et al. 2013) than the
trees estimated under a conventional model employing a
single rate matrix. To further evaluate the performance of
the selection models on tree estimation, we analyzed the
25 protein data sets simulated under an HB model for site-
specific codon frequencies (Holder et al. 2008). Because the
data sets were simulated based on the parameters estimated
from the mitochondrial cytochrome b sequence data, an
amino acid rate matrix specific to the mitochondrial proteins
(MTrev) (Adachi and Hasegawa 1996) should be a better
fitting model than those matrices based on nuclear proteins
such as the LG matrix. Indeed, the likelihood of the first

Table 2. ML Estimations of the Amborella Chloroplast Data for Two Competing Trees.

Modela ln L of Tree A "ln L
(Tree B – Tree A)

P* (Tree A) AICc per Siteb No. of Model
Parameters

F Component
Weightc

cpREV + F (base model) 0.54 22.39 47 1.0

Base + sel2 �175584.62 �1.68 0.53 22.39 48 1.0

Base + cF4 �175611.95 �1.95 0.45 22.40 51 0.86

Base + cF4 + sel2 �175661.35 2.38 0.45 22.40 52 0.86

Base + cF9 �175685.83 2.16 0.33 22.37 56 0.82

Base + cF9 + sel2 �175419.47 6.85 0.23 22.32 57 0.67

Base + cF20 �175100.47 11.02 0.10 22.28 67 0.66

Base + cF20 + sel2 �174758.52 18.19 0.11 22.28 68 0.65

Poisson + CAT20 �174772.98 18.06 0.14 22.81 66 NA

NOTE.—Tree A, Amborella alone at the base of the angiosperm phylogeny; tree B, Amborella + water lilies at the base of angiosperms.
asel2 is the selection model with the neutral amino acid profile estimated from equal codon frequency with GARP/FYMINK adjustment.
bCorrected AIC score calculated based on tree A. Nearly identical AIC per site scores were obtained if using tree B in the calculation.
cWeight for the F component was calculated based on tree A. Similar weight was obtained for each model if using tree B in the calculation. NA, the F component is not
applicable for the model.

*P value from the KH test (Kishino and Hasegawa 1989). The null hypothesis is the indicated tree. Small P values suggest strong support for the other tree.

Table 3. ML Estimations of the Breviates Sequence Data for Two Competing Trees.

Modela ln L of the
OA Tree

"ln L (OA
� BA trees)

P* (BA Tree) AICc per Siteb No. of Model
Parameters

F Component
Weightc

LG + F (base model) �659982.11 �26.29 0.81 30.27 43 1.0

Base + sel2 �659637.36 �28.13 0.82 30.26 44 1.0

Base + cF4 �655589.20 �5.32 0.58 30.07 47 0.57

Base + cF4 + sel2 �655396.84 �5.29 0.58 30.06 48 0.56

Base + cF9 �651183.79 13.72 0.25 29.87 52 0.20

Base + cF9 + sel2 �651158.31 13.92 0.25 29.87 53 0.21

Base + cF20 �647984.93 16.59 0.16 29.72 63 0.18

Base + cF20 + sel2 �647970.47 17.02 0.16 29.72 64 0.18

Poisson + CAT20 �652436.05 0.07 0.50 29.93 62 NA

NOTE.—BA tree, breviates and apusomonads clade tree; OA tree, opisthokonts and apusomonads clade tree.
asel2 is the selection model with the neutral amino acid profile estimated from equal codon frequency with GARP/FYMINK adjustment.
bCorrected AIC score calculated based on the BA tree. Identical AIC per site scores were obtained if using OA tree in the calculation.
cWeight for the F component was calculated based on the BA tree. Similar weight was obtained for each model if using the OA tree in the calculation. NA, the F component is
not applicable for the model.

*P value from the KH test (Kishino and Hasegawa 1989). The null hypothesis is the indicated tree. Small P values suggest strong support for the other tree.
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simulated data set in the “deep tree 1x” data sets (Holder et al.
2008) was much higher under MTrev + F + D than under
LG + F + D (the ln Ls were �7,532 and �7,704, respectively).
Therefore, we used the MTrev as the rate matrix in the base,
Fsel, cF, and cFsel models to do tree search for the 25 protein
data sets. We used two neutral amino acid profiles for the
selection models: the amino acid frequencies expected from
equal codon frequency with GARP/FYMINK ratio adjustment
(sel2), and the frequencies expected from the nucleotide fre-
quencies at the 3rd codon positions in each data set (sel3). In
both cases, to be consistent with the mitochondrial rate
matrix (MTrev) used in the models, the vertebrate mitochon-
drial genetic code (http://www.ncbi.nlm.nih.gov/Taxonomy/
Utils/wprintgc.cgi, last accessed January 29, 2014) was used to
derive the neutral amino acid frequencies. For comparison,
the CAT20 model was also applied to the tree estimation for
the 25 data sets. Figure 3 shows box plots of the differences in
RF distances between the estimated trees and the generating
trees for the 12 test models compared with the base model. A
paired t-test of the mean RF distance under Fsel3 was signif-
icantly smaller than the base model (P = 0.03), whereas the RF

distance under Fsel2 was not significantly smaller than that
under the base model (P = 0.43). Although the mean RF dis-
tance under the cF4, cF4sel2, and cF4sel3 models were all
smaller than that under the base model, they were not sig-
nificant (P = 0.21–0.30). Similarly, no significant differences
were present for the cF20, cF20sel2, cF20sel3, and CAT20
models relative to the base model. However, the cF9,
cF9sel2, and cF9sel3 models gave RF distance differences
that were significantly or marginally not significantly
(P = 0.07, 0.03, and 0.09, respectively) smaller than those of
the base model. It is a bit surprising that cF20, cF20sel, or
CAT20 models, which have more components of amino acid
profiles, did not perform better than the Fsel3, cF9, cF9sel2,
and cF9sel3 models. This may be due to the fact that the
cF20 profiles were derived from most or all nuclear proteins in
the HSSP database, whereas the target data were simulated
based on the site patterns of the mammalian mitochondrial
proteins, and it is well known that the latter have quite
different amino acid compositions than nuclear proteins.
The smaller number of the cF9 profiles may be more general
to all proteins—nuclear or mitochondrial—which could
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FIG. 3. The difference in the Robinson–Foulds distances between the trees estimated under the models listed on the y axis and the base model
(MTrev + F + D) compared with the generating trees. sel3 is the selection model with the neutral amino acid profile estimated from the 3rd codon
positions. sel2 is the selection model with the neutral amino acid profile estimated from equal codon frequency with GARP/FYMINK adjustment.
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explain the better tree estimation of the cF9 and cF9sel
models.

Figure 4 shows the difference in the branch score distances
(BSDs) between the trees estimated under the 12 test models
and the base model compared with the generating trees.
Again the cF9, cF9sel2, and cF9sel3 had significantly smaller
BSD than the base model (P< 0.003 in the three cases), fol-
lowed by cF20, cF20sel2, and cF20sel3 (P< 0.005 in the three
cases), whereas the other six models (Fsel2, Fsel3, cF4, cF4sel2,
cF4sel3, and CAT20) showed no significant differences in
BSDs from the base model (P> 0.07 in those cases). The
results indicated the cF9 and cF20 profiles, with or without
selection, tended to estimate more accurate branch
lengths than the standard D models when the data are sim-
ulated under an HB model for the site-specific codon
frequencies.

In summary, we have developed a different way of allowing
rate matrices of a base model to use different frequencies.
Rather than adjusting in the usual way through exchangeabil-
ities, the rate matrices adjust for data set-specific or site-
specific frequencies using population genetics principles.
We combined the substitution-selection model with an

amino acid class frequency mixture model to partially ac-
count for site-specific amino acid frequencies. LR tests and
AICc scores were conducted to show all selection models fit
data significantly better than corresponding models without
selection for most of the 21 test data sets, and the cF20 with
selection models achieved the best likelihoods for most data
sets among all the models considered. We further applied the
cF and selection models to three difficult phylogenomic prob-
lems (the positions of microsporidia and breviate among eu-
karyotes, and the position of the root in the flowering plant
phylogeny) with competing trees. In contrast to conventional
models, the cF9, cF20, and their selection models always
favored the trees considered more plausible under the most
advanced phylogenetic methods and data. Moreover, the
cF20 and cF20 selection models showed the highest likelihood
gains for the more plausible trees in all three data sets. The KH
test is not strictly justified because the trees favored by con-
ventional models are, as such, data dependent. Because it is
more difficult to reject an estimated tree than an a priori one,
the KH test P values in favor of the alternative trees are likely
larger than they would be if a correction for data dependence
could easily be applied.

Difference in Branch Score Distance (Model − Base Model)
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FIG. 4. The differences in the BSDs between the models listed on the y axis and the base model (MTrev + F + D) compared with the generating trees.
See figure 3 legend for labels of the models on the y axis.
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We further used the cF and selection models to estimate
trees for data simulated under an HB model for site-specific
residue frequencies. Overall, the cF9 and cF9sel models esti-
mated trees closer to the generating trees, in terms of both
topology and branch lengths, than the cF20 and cF20sel
models, which in turn were better than the base D model,
cF4, and cF4sel, or CAT20. Because a neutral amino acid fre-
quency profile is important to the model, we explored several
means of estimating neutral frequency profiles, including
those expected from equal codon frequency with or without
the adjustment of the ratio of GARP to FYMINK amino acids
(which is an indicator of GC content bias in the underlying
genes) and those expected from the nucleotide content at
3rd codon positions. When the coding sequences are known,
the latter profile appeared to work better. When only the
amino acid sequences are known, the profile based on the
equal codon frequency with the adjustment of GARP/
FYMINK is preferred over that without the adjustment, al-
though the difference is often not very significant. Other ways
of estimating a neutral amino acid profile are possible. For
instance, similar to our recent work (Wang et al. 2013), one
can simulate sequences under the strictly neutral codon
model M0 of Yang et al. (2000) with != 1 and with other
parameters estimated from the target data. The translated
amino acid sequences from the simulated codon sequences
may be used as a neutral amino acid profile in the selection
models. By properly modeling the site-specific residue fitness
in the amino acid substitution process, the cF selection
models are valuable for phylogenetic inference and evolution-
ary studies.

Materials and Methods

An Amino Acid Substitution-Selection Model

Following Halpern and Bruno (1998), a rate matrix for residue
changes under selection pressure is defined as follows:

QðsÞij / Qð0Þij fij ð1Þ

where Qð0Þij is a rate matrix for the residues under no selection
and fij is the probability of fixation of mutant j given i.
According to population genetics theory (Kimura 1962), if
the effective population size is N and the relative fitness of j
to i is sij, then the fixation probabilities are:

fij �
2sij

1� e�2Nsij
; fji �

�2sij

1� e2Nsij
ð2Þ

As in Halpern and Bruno (1998), it follows that
fij
fji
¼ e2Nsij ¼ eSij , where Sij = 2Nsij.
Let �j0 and �j be the stationary frequency of j under neu-

tral evolution and under selection, respectively, then time
reversibility requires that

1 ¼
�iQij

�jQji
¼
�i

�j

Q0
ij fij

Q0
ji fji

¼
�i

�j

�i0 Q0
ij

�j0 Q0
ji

fij
fji

�j0

�i0

¼
�i

�j

fij
fji

�j0

�i0

¼
�i

�j

�j0

�i0

eSij

ð3Þ

If we let

Fj ¼ log
�j

�j0

ð4Þ

then equation (3) gives that Sij ¼ log
�j

�j0
� log �i

�i0
= Fj � Fi:

Substituting this into equations (2) and (1), we get:

QðsÞij / Qð0Þij

Fj � Fi

1� e�ðFj�FiÞ
ð5Þ

which is equivalent to equation (10) in Halpern and Bruno
(1998). Although Halpern and Bruno define this model where
i and j are codons, we use it to model evolution at the amino
acid level because both can be considered alleles in the pop-
ulation genetics theory, and it is plausible that an amino
acid substitution will involve two simultaneous nucleotide
changes (Averof et al. 2000; Whelan and Goldman 2004;
Doron-Faigenboim and Pupko 2007; Kosiol et al. 2007).
Equation (5) applies for standard amino acid rate matrices
as well, which allows us to obtain Qð0Þij from these matrices:

Q0
ij ¼ QðMÞij

1� e�ðF
ðMÞ
j �F

ðMÞ
i Þ

FðMÞj � FðMÞi

ð6Þ

where QðMÞ is any standard amino acid substitution rate
matrix such as LG and FðMÞj satisfies equation (4) but with
�j replaced by the equilibrium frequency �ðMÞj from the rate
matrix QðMÞ. We call this new amino acid model with selec-
tion an “F substitution-selection model” (Fsel), as the selec-
tion operates on the +F component in the standard protein
rate matrices. This can be combined with the standard
discretized D rate mixture model (Yang 1994) to take into
account among-site rate heterogeneity; standard notation
would then be Fsel + � but for what follows, we leave out
the + � notation, as rate variation is always included in all the
models we discuss.

Estimating Neutral Amino Acid Frequency
Profile (�j0Þ

For the substitution-selection model (eqs. 5 and 6), an amino
acid frequency profile under no selection is required to com-
pute the Q matrix under selection. We present three ways of
estimating �j0 . The first can be used when the corresponding
DNA coding sequences are known for the protein data.
Codon frequencies are calculated as the products of 3rd
codon nucleotide frequencies, and amino acid frequencies
as sums of synonymous codon frequencies. For instance, sup-
pose the frequencies of A, C, G, and T at the third codon
position for a gene alignment are a, c, g, and t, respectively.
Then, taking the example of Phe because it has two synony-
mous codons (TTT and TTC), the expected frequency of Phe
under neutral evolution is t� t� t + t� t� c (corrected for
the amount of the stop codons). The second way to obtain
�j0 is to assume all 61 sense codons have equal frequency
(1/61) under no selection; then the amino acid frequencies
will be determined by the number of synonymous codons
that each amino acid has. This latter approach ignores the fact
that amino acid composition is affected by nucleotide bias
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(the G + C content of the coding sequence). Previous studies
have shown that genes with high G + C content encode pro-
teins with higher frequencies of amino acids coded by GC-rich
codons (either C or G at the 1st and 2nd codon positions)
including G, A, R, and P, whereas genes with high A + T con-
tent encode proteins with higher frequencies of amino acids
coded by AT-rich codons such as F, Y, M, I, N, and K (e.g.,
Foster et al. 1997; Wang et al. 2004). Given a protein sequence
alignment, the ratio of the frequency of the GARP amino
acids to that of the FYMINK amino acids can be determined,
and this will correlate with a higher G + C content in the
nucleotide coding sequence. The third method for �j0 calcu-
lation takes into account the effect of the GC content bias on
amino acid composition based on this ratio observed in the
protein sequences.

Let A denote the set of amino acids GARP and B denote
the set of FYMINK. Under an equal codon frequency model, E,
if x is a randomly selected amino acid then x is in A with
probability 18/61 and x is in B with probability 12/61, giving
the ratio of the GARP to FYMINK amino acids as �0 = 1.5. To
adjust for a different neutral GARP to FYMINK ratio, �, we set

�j0 ¼
PE x ¼ jð Þ � a j 2 A
PE x ¼ jð Þ � b j 2 B

�
ð7Þ

where b ¼ 2:5
1 + � and a ¼ ��b

1:5 . The frequencies of the other
amino acids do not change, except that the resulting amino
acid frequencies are rescaled, so that the sum of the frequen-
cies of the 20 amino acids will be 1.0.

An Improved Class Frequency Mixture
Model with Selection
Both the standard protein models with the +F variants or the
above Fsel models do not adequately account for site-specific
substitution processes even when a rates-across-sites process
is modeled. A number of “site-heterogeneous” phylogenetic
mixture models have been introduced and tested in the last
decade, and all appear to better model important site-specific
patterns of protein evolution (Lartillot and Philippe 2004;
Quang et al. 2008; Wang et al. 2008). One of these was the
amino acid site class frequency (cF) mixture model (Wang
et al. 2008) that aims to account for the site-specific amino
acid substitution patterns for phylogenetic estimation while
controlling the number of free parameters used in the model.
Under the cF model, amino acid substitutions at a site may be
modeled as a mixture of several recurrent site classes each
having a specific frequency profile, and the likelihood of a site
is a weighted sum of the likelihoods conditional on the amino
acid profiles of the site classes. Wang et al. (2008) found this
cF mixture model fit data better and gave better phylogenetic
estimation than standard models with a single Q matrix, re-
ducing LBA artifacts in simulated data and empirical phylo-
genomic data. Indeed Lartillot et al. (2009) showed that the cF
model is only model other than CAT (Lartillot and Philippe
2004) that can account for substitution saturation for their
phylogenomic data.

In the original implementation of the cF model in
QmmRAxML (Wang et al. 2008), four site classes were derived

from a principal component analysis of the amino acid fre-
quency vectors from the 6,555 aligned positions assembled
from 21 conservative protein family data sets. These site clas-
ses include a class of predominantly Val, Ile, and Leu; a class of
mainly Gly; a class of predominantly Asp and Glu; and a class
of a more homogenous amino acid composition. The number
of the amino acid sites used in deriving these classes was
relatively small and the classification lacked some common
site patterns, such as classes that are predominantly RKH,
FYW, or AGPST (Dayhoff et al. 1978; Susko and Roger
2007). To get a more representative classification of the
known site classes, we utilize two sets of amino acid profiles
previously published: 1) the nine component profiles derived
from an analysis of the Dirichlet mixture densities over amino
acid frequency distributions at the aligned positions of the
homologous proteins in the BLOCKS (Henikoff and Henikoff
1991) databases (Sjölander et al. 1996) and 2) the CAT-C20
profiles (Quang et al. 2008) of amino acid site patterns learned
from 1,030 protein alignments in the HSSP database (Sander
and Schneider 1991). Sjölander et al. (1996) found their nine
components mixture of amino acid frequency distributions
improved detection of remotely related protein family mem-
bers. Quang et al. (2008) showed using the CAT-C20 profiles
can improve phylogenetic inference especially for the substi-
tution-saturated data. To distinguish the three sets of pub-
lished cF profiles with the 4, 9, or 20 components, we will refer
to them as cF4, cF9, and cF20, respectively. Figure 5 shows the
relationship among the three sets of profiles, with cF4 being
roughly a subset of cF9 which is in turn a subset of cF20.

The rate matrix for a site having one component in the
cF4, cF9, or cF20 profiles is obtained from an empirical rate
matrix, Q, using the usual adjustment, via exchangeabilities.
The only change is that the role of the data set frequencies is
now played by the set of profiles of interest in cF4 (or cF9 and
cF20). All models also include an F class, which uses the data
set frequencies. So, for instance, cF4 has five classes, one F class
for the overall frequencies and four for the cF frequencies. We
refer to the model that obtains rate matrices for the F and cF
classes, via the usual adjustment to the exchangeabilities, as
the cF4 (or, respectively, cF9 and cF20) model. If instead the
adjustment incorporates selection for the F component, we
refer to it as the cF4sel (or cF9sel and cF20sel) model. Because
the class for a given site is unknown, the site likelihood is
determined by averaging the partial site likelihoods condi-
tional on each site class profile (Wang et al. 2008):

L xið Þ ¼
1

g

Xk + 1

c¼1

wc

Xg

j¼1

Pðxi j rj,�cÞ ð8Þ

where xi are data at site i, K + 1 are number of cF classes plus
the F class (K = 4, 9, and 20 for cF4, cF9, and cF20, respectively),
rj is the rate of a Gamma distribution discretized into one of
the g categories (g = 4 in all cases studied here) with equal
probabilities and wc’s are the weights for the site classes that
are estimated by the expectation-maximization algorithm
described in Wang et al. (2008).

The cF selection models are expected to partially account
for site-specific selection effects on protein evolution. All F
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and cF substitution-selection models have been implemented
in QmmRAxML version 2.0 (http://www.mathstat.dal.ca/
~hcwang/QmmRAxML, last accessed January 29, 2014),
which requires an additional input file to provide an amino
acid frequency profile under no selection (see the above sec-
tion). Furthermore, to compare with the cF mixture models
with or without selection, an empirical profile mixture model
(CAT-C20 proposed in Quang et al. 2008) was implemented
in QmmRAxML 2.0. The CAT-C20 model (CAT20 for short)
uses a proportional rate matrix and the C20 profiles to con-
struct a Q matrix mixture in phylogenetic estimation (Quang
et al. 2008). All models used in the article had + D4 to account
for rate heterogeneity across sites.

Data and Model Tests

For the 21-protein family data sets previously assembled in
our group (Wang et al. 2008), we first estimated the ML trees
under a base model (LG + F + D) with four gamma rates. We
then estimated the likelihoods of the trees under the Fsel, cF4,
cF4sel, cF9, cF9sel, cF20, and cF20sel models. For the selection
models, two neutral amino acid profiles (�j0 ) were used: in
selection 1 (sel1),�j0 was expected from equal codon frequen-
cies and in sel2, �j0 was same as in sel1 but with the GARP/
FYMINK ratio adjustment (eq. 7). Because each pair of the
sel1 models and corresponding no-selection models (Fsel1
and LG + F + D; cF4sel1 and cF4; cF9sel1 and cF9; and
cF20sel1 and cF20) have the same number of free parameters,
higher likelihood for a model indicate better model fit. The
sel2 models have one more free parameter, the ratio of GARP/
FYMINK, than the corresponding sel1 models. For comparing
the base model with the cF4, cF9, and cF20 models, LR tests
with 4, 9, or 20 degrees of freedom were used, as the cF
models estimated the weights for the 4, 9, or 20 cF compo-
nents plus the average amino acid frequency vector of the
data set, which sum to 1.0 for each cF model. Because of

boundary constraints, usual LR tests are not strictly justified
but are expected to give conservative P values (Self and Liang
1987): that is, under the null hypothesis, the probability of a
P value less than 0.05 is smaller than 0.05. We further com-
puted for each model, the second order AIC (Akaike 1974)
that corrects for sample size (the corrected AIC [AICc]), which
is calculated as follows:

AICc ¼ �2 ln L̂ + 2m +
2mðm + 1Þ

n�m� 1

where ln L̂ is the ML estimate under a model, m is the number
of the parameters under the model, and n is the number of
the aligned positions in the data set. Models with smaller AICc

scores are considered to fit the data better.
For comparing the cF4, cF9, and cF20 models, usual LR

tests do not apply as the three models were not nested.
We, therefore, compared AICc scores for the cF models. In
addition, the CAT20 model was applied to estimate the like-
lihoods of the trees for the 21 data sets. The CAT20 model has
19 free parameters relative to the base model as the estimated
weights for the 20 profiles sum to 1.0. Because CAT20 is not
nested with the base model or any of the cF models, the AICc

scores were used to compare CAT20 with the other models.
To evaluate the performance of the selection models on

tree estimation, we analyzed three sets of phylogenomic data.
One is the multigene microsporidia data (40 taxa 24,294 sites
concatenating from 133 proteins; Brinkmann et al. 2005),
which is well known for leading to an LBA artifact in ML
analyses with standard protein models where the long-
branching microsporidia is placed at the base of eukaryotes
close to the long-branching outgroup archaeal species. The
gradual removal of fast evolving sites or the use of more
complex phylogenetic models that take into account site-
to-site heterogeneity (e.g., the CAT model of Lartillot and
Philippe [2004]) recovers a tree that groups microsporidia

cF20 (CAT20)     cF9       cF4   
12 ILM arndcqeghkpstwy    5 ILM arndcqeghkpstwy   1 ILMV arndcqeghkpstwy 
 7 AG rdcqehilkmfptwyv    1 ACGST rdqehilkmfwyv   2 G rndcqehilkmfpstwyv 
20 DE arcghilkmfpstwyv    7 NDE arcilkmfptwyv     3 DE arncqghilkmfpstwyv 
15 NQHY adegilkmptv       3 QK cgilmfpwyv         4 P degilmv 
 5 HFWY arndcqegilkmpstv  2 HFWY arndcqegilkmpstv 
 4 RQK adcegilmfpstwyv    4 RQK adcegilmfpstwyv 
 3 IV arndcqeghkfpstwy    6 IV arndqeghkfpstwy 
 8 CHFWY rndqegkp         8 CIMV rndqegkp 
16 NDG arcqilkmfptwyv     9 CGPW ailkmfstyv 
 1 NST rdqeghilkmfpwyv 
 2 ACITV rndqeghlkfpswy 
 6 ADE rncghilkmfpwyv 
 9 RQLM andcegifpstwyv 
10 LMFWY arndcqeghkpstv 
11 AQS cilmfpwyv 
13 ITV andceghfpswy 
14 ACS rndqehilkmfpwyv 
17 AP rndceghilkmfwyv 
18 QT dcgilmfpwy 
19 QEK cgilmfpstwyv 

FIG. 5. Site patterns (profiles) in the cF4 (Wang et al. 2008), cF9 (Sjölander et al. 1996), and cF20 models. The cF20 model uses the CAT-C20 profiles
(Quang et al. 2008). The numbers ahead of each model column indicate the order of the profiles in the original specifications of the model. The amino
acids are shown in capital or small letters based on the ratio of the frequencies of the amino acids to the average amino acid frequencies of the LG
matrix (Le and Gascuel 2008). Capital letters indicate the ratio greater than 1.5 and small letters indicate the ratio less than 0.85. Amino acids not shown
on the list have ratios between 0.85 and 1.5.
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with the fungi (Brinkmann et al. 2005). Another data set of
interest was the Amborella chloroplast genome data (24 taxa
15,688 sites concatenating from 61 proteins; Leebens-Mack
et al. 2005) that has been used to root the tree of angio-
sperms, which is still a matter of some debate (Goremykin
et al. 2013). In this case, two competing trees are Amborella
alone or Amborella + water lilies at the base of the flowering
plants and different data types (DNA or protein data) and
different phylogenetic models favor one versus the other to-
pology (Leebens-Mack et al. 2005; Wang et al. 2007). A third
eukaryotic data set (22 taxa 43,615 sites combined from 159
proteins; Brown et al. 2013) concerns the phylogenetic posi-
tion of the breviate lineage. Two competing trees regarding
the breviate lineage were obtained under the standard
LG + F + D model with RAxML (Stamatakis et al. 2008) and
under CAT-GTR + D model with PhyloBayes (Lartillot et al.
2009), respectively (Brown et al. 2013). For the three phylo-
genomic data sets, we applied a base D model with LG or an
appropriate rate matrix, cF4, cF9, and cF20, and their selection
models to estimate the likelihoods of the predefined compet-
ing trees. For comparison, the CAT20 model was also applied
to the three data sets. For each data set, we assessed the
significance of the difference in log likelihoods for the two
competing trees under each of the models using a KH test
(Kishino and Hasegawa 1989) to test where there was evi-
dence for or against either of two trees. We also calculated for
each data set the corrected AICc score for each model. The
models having the smallest AICc score was the best fitting
model.

Finally, we considered data simulated under the HB model
of Halpern and Bruno (1998). Holder et al. (2008) analyzed
1,610 mammalian cytochrome b sequences to get ML esti-
mates of the site-specific rate parameters under the HB
model. They then constructed five trees of 50 taxa selected
from the large cytochrome b tree and simulated five nucleo-
tide data sets for each tree under the site-specific rates. They
found that the standard WAG + F + D + I model applied to
these data estimated trees with large RF distances (Robinson
and Foulds 1981) in the tree topologies to the true generating
trees, especially for the 25 data sets with divergent and short
sequences (the “deep tree 1x” data: each data set had 50 taxa
1,128 nucleotides, or 376 amino acids). We applied the + F,
cF4, cF9, and cF20 models, with or without selection, as well as
CAT20, to estimate ML trees for the 25 translated protein
data sets. As the nucleotide sequences were available, a neu-
tral amino acid profile based on the nucleotide content at the
3rd codon positions was calculated for each data set and used
in the selection models. In addition, we also estimated neutral
amino acid profiles expected from equal codon frequency
with GARP/FYMINK ratio adjustment for the data sets. As
in Holder et al. (2008), we used the generating tree to start the
tree search in each case. We used two quantities to compare
the estimated trees with the true generating trees: the RF
distance and the BSD (Kuhner and Felsenstein 1994). The
BSD is the square root of the sum of squared differences in
branch lengths. Here, splits that are not present in a given tree
are assigned a branch length of 0. The sum is over splits
present in either tree. As the generating trees were based

on the codon sequences and the branch lengths were esti-
mated in terms of the number of substitutions per codon site,
whereas the estimated trees were based on the translated
protein sequences and measured as the number of amino
acid substitutions per site, the branch lengths were not di-
rectly comparable for the estimated trees and the generating
trees. We therefore rescaled the branch lengths of both gen-
erating trees and the estimated trees by the total tree lengths
for each model and for each data set, so that the total tree
lengths for each tree after the scaling is 1.0. We used tree-

dist in the Phylip package (Felsenstein 2005) to calculate
the RF and BSD distances.
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