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Abstract 

The self-organizing tree algorithm (SOTA) was recently introduced to construct phylogenetic trees from biological 
sequences, based on the principles of Kohonen's self-organizing maps and on Fritzke's growing cell structures. SOTA 
is designed in such a way that the generation of new nodes can be stopped when the sequences assigned to a node are 
already above a certain similarity threshold. In this way a phylogenetic tree resolved at a high taxonomic level can be 
obtained. This capability is especially useful to classify sets of diversified sequences. SOTA was originally designed to 
analyze pre-aligned sequences. It is now adapted to be able to analyze patterns associated to the frequency of residues 
along a sequence, such as protein dipeptide composition and other n-gram compositions. In this work we show that the 
algorithm applied to these data is able to not only successfully construct phylogenetic trees of protein families, such as 
cytochrome c, triosephophate isomerase, and hemoglobin alpha chains, but also classify very diversified sequence data 
sets, such as a mixture of interleukins and their receptors. 

Keywords: amino acid sequences; classification; neural network; phylogenetic reconstruction; self-organizing maps 

Neural networks (NNs) have several unique features and advan- 
tages over conventional statistical methods: they incorporate both 
positive and negative information; they are able to detect second- 
and higher-order correlation in patterns and  a preconceived model 
is not required. These features make them particularly suitable for 
molecular sequence analysis. Since NN methods were first intro- 
duced in the analysis of sequence data to distinguish ribosomal 
binding sites from nonbinding sites (Storm0 et al., 1982), these 
techniques have found their applications in various fields of se- 
quence analysis, including DNA introdexon discrimination and 
gene identification, DNA and protein pattern analysis, protein sec- 
ondary and tertiary structures prediction, protein family classifi- 
cation, and phylogenetic analysis (for a recent review, see Wu, 
1997). 

Neural networks may  be classified as supervised or unsuper- 
vised according to their learning algorithms. A supervised network 
is trained by a data set of predefined organization scheme (e.g., a 
database organized according to family relationships), and used to 
classify new sequences into the data  set. An unsupervised network, 
on  the other hand, defines its own organization scheme according 

Reprint requests to: Jose Maria Carazo, Centro Nacional de Biotecnologia- 
CSIC, Universidad Autonoma, 28049 Madrid, Spain; e-mail: carazo@cnb. 
uames. 

to the degree of sequence kinship (Wu et  al., 1995). Unsupervised 
learning has the advantage that no previous knowledge about the 
system under study is required, and hence, it is appropriate for 
pattern analysis of diversified data sets. This approach has been 
applied to detect signal peptide coding region and potentially func- 
tional regions of nucleic acids (Amgo et al., 1991; Giuliano et al., 
1993), protein sequence classification (Ferran & Ferrara, 1991; 
Ferran et al., 1994; Andrade et al., 1997), and protein pattern 
recognition (Hanke et al., 1996; Hanke & Reich, 1996). In all the 
former applications, a special kind of unsupervised learning scheme, 
the Kohonen self-organizing map (SOM) algorithm (Kohonen, 
1990, 1997), was implemented for network training and classifi- 
cation. This approach generates a mapping from a high-dimensional 
input signal space to, in general, a two-dimensional output space. 

Recently, we proposed a new type of unsupervised growing self- 
organizing neural network that expands itself by following the 
taxonomic relationships that exist among the sequences being 
classified. This network, named self-organizing tree algorithm or 
SOTA (Dopazo & Carazo, 1997), combines Kohonen's SOM 
and Fritzke's unsupervised growing cell structures (GCS) (Fritzke, 
1994) to classify sequences and construct phylogenetic trees. 
The network is capable of following a dynamic growth pattern, 
changing the number of nodes as dictated by the variability 
actually found in the specific data set under analysis. The algo- 
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rithm has been designed in such a way that the growth of the 
network can be stopped when the sequences assigned to a node 
have a similarity above a user-given threshold. In this way a 
phylogenetic tree resolved at a higher level can be obtained. 
This feature has proved very important when analyzing sets of 
diversified sequences. 

The original SOTA was designed to analyze pre-aligned protein 
sequences. However, it is a fact that patterns associated to residue 
frequency along a sequence have been successfully used for se- 
quence classification. Among these derived patterns we highlight 
protein dipeptide composition (van Heel, 1991 ; Ferran & Ferrara, 
199 I ; Ferran et ai., 1994) and the n-gram composition, that ex- 
tracts and counts the occurrence of n consecutive residues (n- 
gram) from a sequence string in a sliding window fashion (Wu 
et al., 1992). Although some of the neighborhood information in a 
sequence may  be lost in these codings, they allow for comparison 
of sequences of different lengths without having to align them. 
With these considerations in mind, we present in  this work an 
application of  SOTA that uses protein dipeptide composition and 
two best n-gram codings (AE12 and A2E4, Wu et al., 1992, 1996) 
as input data.  The ability of  SOTA to handle large sequence sets is 
demonstrated by constructing phylogenetic trees of three protein 
families-cytochrome c, triosephophate isomerase, and hemoglo- 
bin alpha chains, as well as classifying a mixture of sequences of 
interleukins/receptors. 

Results 

In this work  we check the performance of  SOTA with different 
types of input data. We use the name SOTA/SEQ  for the SOTA 
algorithm using aligned sequences for its input, SOTA/DP for 
SOTA using a matrix of dipeptide composition for its input, SOTAI 

AEI 2 and SOTA/A2E4 when using the n-grams AE I2 and A2E4 
as inputs.  PHYLIP/NJ  (Felsenstein, 1993) is referred as the 
neighbor-joining method of PHYLIP to construct phylogenetic trees, 
which is used here for control tests. PHYLIP programs use the 
same aligned sequences as SOTA/SEQ. 

Protein families: Cytochrome c, triosephosphate isomerase, 
and hemoglobin alpha chains 

Cytochrome c, triosephosphate isomerase (TPI), and hemoglobin 
are often used as models for phylogenetic reconstruction due to 
their conservation in evolution and large numbers of sequences 
from various species are known. SOTA  and PHYLIP programs 
were used to analyze sequences of the three families, respectively. 
The results are summarized in Tables 1-3. 

The results presented above show that the four types of SOTA 
using different types of input data (aligned sequences, dipeptide 
composition, AE12, and A2E4) as well as PHYLIP/NJ produce a 
clustering that is consistent with the taxonomy of the three protein 
families. For cytochrome c and hemoglobin alpha chain families, 
PHYLIP/NJ presented the best classification accuracy, followed 
by SOTA/SEQ.  The three n-gram based methods (SOTA/DP, 
SOTA/AEl2, and SOTA/A2E4) got similar classification accu- 
racy. For the TPI family, while PHYLIP/NJ still produced the best 
result, SOTA/A2E4 performed much better than SOTA/SEQ, 
SOTA/DP, and SOTA/AE12, especially at the more stringent level 
(accuracy-I) that counts only the largest clusters of each taxa 
classified by the methods (Table 2). 

The last columns of Tables 1-3 give the CPU time in minutes 
that was consumed on a SGI R10000 server by the four SOTA 
methods to classify the sequences. It is clear that SOTA/DP and 
SOTA/AE12 are much faster than SOTA/SEQ and SOTA/A2E4. 

Table 1. 91 Cytochrome c sequences clustered by SOTA and  PHYLIPINJ 

Methods Plant Protozoa Fungi Insect Ave Reptilia Pisces 

Sota/seq 29+3”;2+Ih 3;Ic  13+2;1 6;3 6 2; 1 2:2 
Sota/dp 27;2;2 3;1 14+2 9 +  1 6 2; 1 2;l:l 
Sota/ae 12 27;2;2 3;l 14+2 9+ 1 6 2; 1 2; l ; l  
Sota/a2e4 26;2;2; 1 3: 1 I I +2:3+ 1 8+2:1 6  2; 1 2;2+2 
Phylip/nj 27;2;2 4+2  14+2 7;2 6 1; l : l  4 
Taxa number 31 4 14 9 6 3 4 

Accuracy- I d  Accuracy-2e CPU time 
Methods Amphibia Mammalia Others (%I (min) 

Sota/seq 1 
Sota/dp 1 
Sota/ae I2 1 
Sota/a2e4 1 
Phylip/nj 1 
Taxa number 1 

11;3 3;2  80.77 
11+1:3 3+1:2 82.97 
11+1;3 3+ 1;2 82.97 
14 2;l;l;l 80.22 
11;3 3;2 83.52 
14 5 

96.70  33.73 
93.96 22.03 
93.96 30.35 
90.66 125.68 
94.51 

a“29+3” means that three additional species inserted in the cluster of this taxa (plant). 
h“29+3;2+ I ”  means the taxa is grouped into two clusters, one consisting of 29 species of the taxa and 3 other species, the other 

c“3;1” means the taxa is grouped into two clusters, one consisting of three species, the other of one species. Other similar expressions 

dAccuracy-l calculates the accuracy of the classification based on the biggest cluster of each taxa. 
eAccuracy-2 calculates the accuracy of the classification based on the two biggest clusters of each taxa. 

of 2 species of the taxa and 1 other species. 

in the table and tables helow have the same respective meaning. 
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Table 2. 70 TPI sequences  clustered by SOTA and PHYLIP/NJ 

Methods Prokaryote Archae‘ Plant Protozoa Fungi 

Sota/seq 20;s; 1 ; 1 
Sota/dp 20+1;6+3;1 
Sota/ael2 18+ I ;  9+3  
Sota/a2e4 27+2 
Phylip/nj 27 
Taxa number 27 

Methods 

Sota/seq 
Sota/dp 
Sota/ael2 
Sota/a2e4 
Phylip/nj 

“Archae, archaebacteria. 
hVert, vertebrate. 

5 11;l 
5 9;2;1 
5 9;3 
5 1 1 ; l  
5 12 
5 12 

Accuracy- 1 
(%I 

3;2; 1 4+ 1 
3;2;1 2;2+  1 
3;2;1 4+ 1 
5;  1 3+2;1 
5 ;  1 4 
6  4 

Accuracy-2* 

80.7 1 
77.14 
74.29 
90.00 
97.  I4 

92.86 
90.7 1 
93.57 
95.71 

100.00 

Insect Vert Others 

6+2 7  2; I 
6 +  1 7 3 
6 + 2  7  2; I 
6 + 2  7  2; I 
6 7 2; 1 
6 7 3 

CPU time 
(min) 

27.55 
5.72 
6.15 

56.72 

‘Accuracy-l calculates the accuracy of the classification based on the biggest cluster of each taxa. 
dAccuracy-2 calculates the accuracy of the classification based on the two biggest clusters of each taxa. 

This is directly related with the number of input vector compo- 
nents of each sequence that they are handled: n being the number 
of the sequences, SOTA/DP has the least input vector components 
to handle, that is n*400 for each sequence; SOTA/AE12 has 
n * (20 + 6 + 400 + 36) = n *462 input vector components; 
SOTA/A2E4 has n * (400 + 1,296) = n * 1,696 input vector com- 
ponents; SOTA/SEQ handles n * 21 * 1 ( 1  is the aligned sequence 
length). In the case of hemoglobin alpha chain (134 ungapped 
aligned positions), the input components number for SOTA/SEQ 
is n * 21 * 134 = n * 1,814. So both SOTA/A2E4 and SOTA/SEQ 
usually takes much longer time than SOTA/DP and SOTA/AE12 
to get a result. However, although the number of A2E4 input 

components is definite (1,696), the input components for SOTA/ 
SEQ is determined by sequence length (multiplied by 21). Thus, 
for  a long sequence alignment, SOTA/SEQ will take much more 
time than SOTA/A2E4 to classify the sequences. 

Building a  high-level  tree 

SOTA, but not PHYLIP/NJ or other often-used phylogenetic tree 
programs, presents a unique capability, that is to produce a non- 
fully branched tree, in which only the deeper branches of the 
phylogeny have been resolved. In this way, the classification can 
be stopped at different taxonomic levels. All  SOTA programs (for 

Table 3. 185 Hemoglobin  alpha chain sequences  clustered by SOTA and PHYLIP/NJ 

Methods Ave Reptilia Pisces Amphibia Mammaliaa Primate 

Sota/seq 40+1;1 4;2;2+1;1;1 
Sota/dp 41 + 2  6+2;1;1;1;l 
Sota/ae 12 41+3 5 + l ; l ; l ; l ; l  
Sota/a2e4 40+1;1 6+2;3;1 
Phylip/nj 40; 1 7;2;1 
Taxa number 41 I O  

Methods 
Accuracy- 1 

(%I 

11;4+2 2; 1 
14+1;1 1; l ; l  
9 ;3+l ; l ; I ; l  2; 1 
8;3+ 1 ;2;2 2; 1 
15 3 
15 3 

Accuracy-2‘ 
(%) 

89+3 26; 1 
89+3 14;l  1;2 
89+2 16;6+3;5 
86 + 8;2; 1 20;6; 1 
89 27 
89 27 

CPU time 
(min) 

Sota/seq 
Sota/dp 
Sota/ael2 
Sota/a2e4 
Phylip/nj 

91.89 
87.03 
85.95 
84.59 
97.84 

96.22 
94.59 
91.35 
92.97 
99.46 

”Mammalia,  data excluding those of primates. 
’Accuracy-1 calculates the accuracy of the classification based on the biggest cluster of each taxa. 
“Accuracy-2 calculates the accuracy of the classification based on the two biggest clusters of each taxa. 

361 3 8  
68.27 
82.52 

396.35 
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SEQ, DP, AE12, and A2E4) have this ability. The following is an 
illustration of the power of this capability by SOTA/SEQ as ap- 
plied to the cytochrome c family. 

We analyzed the set of 91 sequences of cytochrome c using 
different values of the SOTA parameter “resource,” that is, the way 
to control within SOTA whether new nodes are going to be gen- 
erated or not. We started with a resource value of 0.001,  for which 
a complete tree was obtained (the result of this complete tree has 
been  used to prepare Table 1). Then, we changed the resource 
value to 0.025, and the program stopped at the 86th cycle that 
assigned the input 91 sequences to 86 nodes, producing an “in- 
complete tree.” Notably, the five pairs of sequences that are not 
separated  are very similar: CYC-CANFA and CYC-MIRLE; 
CYC-HAEIR and CYC-LUCCU; CYC-EQUAS and CYC- 
HORSE; CYC-HUMAN and CYC-MACMU; CYC-DRONO  and 
CYC-STRCA. As expected, the CPU time required (29.70 min) to 
generate an incomplete tree was shorter than the one to generate a 
fully branched tree of the 91 sequences (33.73 CPU min). As the 
resource parameter is set larger, more sequences will not be sep- 
arated. For example, when the resource is set to 0.15, the program 
stops at the 25th cycle and all the sequences are assigned to 2.5 
nodes. In this case it is important to stress again the general con- 
sistency of the result, remarking that node 21 contains all 28 ver- 
tebrates and only one fungus, node 29 contains six insects, node 41 
contains five fungi, and node 17 contains 27 plants. These bigger 
nodes correspond to big branches of a complete tree, that is, to a 
high taxonomy of phylogeny (vertebrate, insect, fungi, plant, etc.). 
The classification at this stage just takes 0.48 CPU min, 70 times 
less than the time needed for the full-branched classification. 

Interleukinslreceptors 

To examine SOTA’s performance on diversified data sets, we choose 
to apply it to analyze 247 sequences of interleukins (IL) and IL 
receptors. Most of ILs belong to the hemopoietin family of cyto- 
kines and the IL receptors belong to the cytokine (hemopoietin) 
receptor superfamily. The hemopoietin family is characterized by 
a four-alpha-bundle helix structure, and the receptor superfamily 
characterized by four conserved cysteins and a WS x WS motif in 
the extracellular part (Bazan, 1990; Boulay & Paul, 1993; Cosman, 
1993). Unlike cytochrome c, TPI and hemoglobin alpha chain, 
both the ligands and the receptors evolved very fast. Although their 
sequences are diversified even within a family, the conservation of 
key features in the structures of hemopoietins and receptors re- 
flects  a pattern of evolution from their respective common ancestor 
rather than convergence to advantageous structures (Shields et al., 
1995, 1996). 

SOTA/DP fully classified the 247 IL/receptor sequences, with 
almost all sequences successfully assigned to the correct sub- 
families (Fig. I ) .  For example, all 14 IL-1 alpha chains are clus- 
tered together, so do all 14  IL-I beta chains,  all 17 IL-2, all 10 
IL-3, all 16 IL-4, all 8 IL-1 receptors, all 8 IL-2 receptor alpha 
chains, etc. The branching orders within each subfamily are logical 
according to phylogeny. Further, the result shows that all interleu- 
kin receptors and only a few interleukins appear forming a distinct 
cluster that set them apart from the other interleukins. This is 
consistent with the classification that the interleukins and the re- 
ceptors belong to different (super)families: the hemopoietin family 
and the receptor superfamily. Although IL-1  and IL-8 do not be- 
long to the hemopoietin family and their receptors do not belong to 
the hemopoietin receptor superfamily, still, IL-1 and IL-8 were 

assigned to the interleukin cluster, while their receptors assigned to 
the receptor cluster. The 5 IL-I receptor antagonists were assigned 
to the interleukin cluster. This is logical in the sense that, func- 
tionally, the receptor antagonist, like 1L-l alpha and IL-I beta, 
combines IL-1 receptor. Also, sequences of IL-I alpha, beta, and 
IL-1 receptor antagonists share about 2.5% amino acid sequence 
identity and the same beta-trefoil 12-stranded beta-barrel structure 
(Vigers et al., 1994). Although all receptors are assigned into the 
receptor cluster, three ILs (3 IL- 1 1, 12 IL-12 beta chain, and  hu- 
man IL-14) are assigned to the “wrong” clusters, that is within the 
receptor cluster. However, it has been shown that the IL-I2 beta 
chain is homologous to hemopoietin receptors (Shields et al., 1996). 

SOTA/AEI2 also completely classified the 247 ILheceptor se- 
quences (figure not shown), and the classification is quite like that 
by SOTA/DP: almost all the interleukins and receptors are clus- 
tered into groups of same proteins; the receptors are clustered 
together distinctly from the interleukin clusters; IL-I receptor an- 
tagonists are within the interleukin cluster; IL- 1 I ,  IL- 12 beta chains, 
and human IL-14 are within the receptor cluster. A close inspect of 
the clusters revealed that the IL-2heceptor and IL-4/receptor have 
a coupled relationship: IL-2 and IL-4  are clustered together and 
their receptors are together. 

SOTA/A2E4 completely classified the ILheceptor sequences, 
with most of the sequences of the same proteins from different 
species clustered together and their branching orders are logical 
according to the taxonomic classification (figure not shown). How- 
ever, it is not noticeable that all IL receptors are clustered into a 
cluster that is distinct from the interleukins, as the way observed in 
SOTA/DP and SOTA/AE12 results. SOTA/SEQ and PHYLIPI 
NJ, on the other hand, simply cannot classify the ILheceptors data 
set. This is due to the enormous sequence divergence within the 
data sets, which results in a great number of large and infinite 
distances among sequences of the different families and super- 
family, and consequently, some of the finer branches of the tree 
could not be properly resolved. 

Discussion 

Comparison with SOM 

We have used the self-organizing tree growing network (Dopazo & 
Carazo, 1997) to classify and reconstruct phylogenetic tree of pro- 
tein families. The SOTA network is a special case of the unsuper- 
vised growing cell structure (GCS) (Fritzke, 1994), which in itself 
was derived from the Kohonen self-organizing map  (Kohonen, 
1990). The key points that SOTA differs from the GCS and SOM 
methods are that the network growth mimics a speciation event 
and the topology of the network is  a binary tree, thus allow an 
appropriate description of the taxonomic relationships within se- 
quences of same proteins from different species (as shown above 
on the analysis of the families of cytochrome c,  TPI, and hemo- 
globin alpha chains). Classical SOM has been shown to map phy- 
logenetically related sequences into same or neighboring neurons 
(Ferran & Ferrara, 1991). Ferran and Ferrara (1992) have observed 
that the Euclidean distances between the input vectors and the 
synaptic code vectors of a classical SOM can be sorted in a de- 
creasing order to further classify the sequences and, thus, may 
construct a hierarchical trees of protein classification. But this 
approach is just  a post-processing of a  SOM result and  is primarily 
applicable within the sequences assigned to the same winner neu- 
ron, and it  is difficult to derive  a complete hierarchy of all neurons 
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Fig. 1. Two hundred forty-seven interleukin/receptor se- 
quences were classified by SOTA/DP using dipeptide 
composition as input. The receptors are grouped into a 
cluster distinct from the interleukins (indicated as an 
arrow on the graph).  The same interleukins or receptors 
from different species are grouped together and branched 
consistent with the taxonomic classification. (Due to the 
limit of the page size, the tree was "cut" at the "root" 
node and printed in two columns. The top of the right 
side should be connected to the bottom of the left side.) 
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of a SOM map. In general. a single SOM training can obtain the 
clustering of a protein family at a definite resolution level. Andrade 
et al. (1997) used several SOMs with different  sizes  against the 
same protein subfamily and combine the classifications at several 
resolutions  to get a tree classification of the protein subfamily. But 
this approach is  not as  efficient  as SOTA. and i t  is hard to be 
applied to large data  sets. 

Classical SOM can classify different protein families  into  dif- 
ferent clusters (Ferran & Ferrara. 1991. 1992: Ferran & Pflug- 
felder. 1993). However. the  optimal  number of cells is usually 
determined  empirically (trinl and error)  or by statistical  methods 
(Ferran & Pflugfelder. 1993). SOTA adopted from GCS the grow- 
ing cell property: the number of  cells and the connections  among 
them are  dynamically  assigned  during the network training.  As 
such. SOTA can classify proteins of different families and super- 
families  more efficiently. To  confirm this. we have used the SOM 
to classify the same data set of 247  interleukin/rcceptors in the 

above section and compare with the classification by SOTA/DP. 
Figure  2 is a SOM topology of  16 Y I6 neurons that was trained to 
classify the dipeptide  compositions of 247 lL/receptors. the same 
input as used i n  Figure I by SOTA/DP. In  the map, 56 neurons 
(22% of the total neurons)  have assigned proteins to them.  Similar 
to the result by SOTA/DP. most of the receptors  are positioned to 
the low left corner of the map: the IL-12 beta chain. IL-14. and 
IL-I3 are at the receptor corner. But IL-8  receptor  are more distant 
from this corner than three interleukins (IL-13, IL-l I ,  and 1L-17) 
are. The interleukins  are  sparsely positioned over the rest of the 
map. Although most of the same proteins from different species  are 
positioned into one  or several neighboring or close neurons. seven 
neurons are shown  to contain mixtures of different proteins within 
the sanle  neuron.  For  example. cell [S. 121 contains  two IL-l 
receptors (ILIS-HUMAN and ills-monky) and one  IL3  (IL3- 
MOUSE): cell [S. IS] contains two IL-2 alpha chains (IL2A-BOVIN 
and IL2A-SHEEP). and one IL-3 receptor  class I 1  alpha  chain 

Fig. 2. Hexagonal topology o f  self-organizing  map  obtained with thc  dipcptidc composition of the learning sct of 247 interleukin/ 
rcccptors.  Thc  trajectory was formed ol‘ thc  best-matching units (winners) and  plotted by thc program  “planes” of the SOM  package. 
S a m  protcins  from  diffcrcnt species arc positioncd to onc neuron  or  several  neighboring neurons. Most o f  the reccptors  arc  positioned 
at the low left corncr of the map.  The 16 * 16 network was trained during 1 . 0 0 0  and 5.000 epochs.  The  pnramctcrs of the learning 
proccss  are  eivcn in Materials and methods (Self-organizing map section). 
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(IL3A"OUSE); cell [3, 151 contains one cytokine  receptor 
common beta chain (CYRB-HUMAN), one IL-10 receptor (IlOR- 
HUMAN), one IL-12 receptor (il2r_mouse),  one  IL-14 (IL14- 
HUMAN), 3 IL-2 receptor  beta  chains (IL2B_HUMAN, 
IL2B_MOUSE,  and IL2BPRAT), one IL-4  receptor  (IL4R- 
HUMAN), two IL-6 receptor alpha chains (IL6A-MOUSE and 
IL6A_RAT), and one  IL9 receptor (IL9R"OUSE), etc.  These 
mixtures of proteins do not occur in the result by SOTA/DP 
(Fig. I ) .  The above analyses prove that SOTA method outperforms 
SOM in this case. 

Encoding of input sequence 

For a defined neural network algorithm, such as SOTA or SOM, 
the coding of sequences for input vectors is key to its performance. 
In general, the sequences to be  used as input to a neural net 
program such as SOTA can be encoded in two different ways: 
( I )  direct sequence encoding, which uses an indicator vector of 
binary numbers (0 or 1) to represent the "identity" of each residue 
in the sequence string (Casari et al., 1995; Andrade et al., 1997; 
Dopazo & Carazo, 1997). For a protein sequence, an amino acid is 
represented as a vector of  21 input units (20 zeros and a single 
one), which includes an extra unit for the gaps. The sequences 
should be aligned before encoding. As a common practice, all 
positions that have at least one gap in a column of the sequence 
alignment  are removed prior to be presented to SOTA/SEQ. 
(2) Residue frequency of a sequence, such as protein dipeptide 
composition (Ferran & Ferrara, 1991; van Heel, 1991). The main 
advantage of dipeptide composition is that the sequences do not 
need to be previously aligned. The main disadvantage is the loss of 
valuable information contained in contiguous amino acid ordering. 
This is the reason why SOTA/DP produces suitable sequence clas- 
sifications in the data sets of cytochrome c, TPI and hemoglobin, 
but  they are generally not as good as SOTA/SEQ in the three 
cases. However, the simplified encoding in SOTA/DP is especially 
useful for diversified data sets, in which a proper sequence align- 
ment is not available. The case of interleukin/receptors clearly 
demonstrates this point: both SOTA/DP and SOM that uses di- 
peptide composition as inputs can easily handle this data set, and 
suitable classifications were made, while both SOTA/SEQ and 
PHYLIP/NJ, which need pre-aligning the sequences, cannot clas- 
sify the data sets. 

Despite the success of dipeptide composition used for sequence 
encoding in  a neural net program, any improvement over this 
residue frequency-based method is expected to get a better result. 
The "n-grams" method (Wu et al., 1992) extends the dipeptide 
frequency coding. The results presented in the last section show 
that AE12, one of the best coding method in others application 
(Wu et al., 1992), seems to be at most marginally better than 
SOTA/DP. In fact, the classification of cytochrome c by SOTA/ 
AE12 is almost the same  as that by SOTA/DP (Table l), and 
the classifications of interleukin/receptors by SOTA/AE12 and 
SOTA/DP are very similar. This is not surprising, because AE12 
does not extract more information from the sequence ordering than 
the only A2 (dipeptide composition), and of the 462 vector values 
of AE12 that are derived from each sequence, 400 are the same 
vector values as A2. The result by SOTA/AE12 is much affected 
by this large component. SOTA/A2E4, using A2 and E4 as inputs, 
presented a similar classification accuracy as  SOTA/DP and SOTA/ 
AE12 did in the classification of the cytochrome c and hemoglobin 
alpha chain families. However, in the case of the TPI family, 

SOTA/A2E4 produced a much better result than SOTA/DP and 
SOTA/AE12 and the classification is even better than SOTA/SEQ 
(Table 2). This suggests that the information of sequence ordering 
kept in the E4 coding has enhanced the coding of A2. It is expected 
that using even larger n-grams, such as A3 and E5, may further 
increase the quality of the classification by SOTA. However, the 
input vector is too large and too sparse (too many zeros) in these 
codings, which makes SOTA to be too difficult to handle them 
directly. A proper data decompression, such as singular value de- 
compression, has been recently introduced into a neural program 
for sequence classification (Wu et al., 1995). This suggests that the 
performance by SOTA  may  be further improved by these methods. 

Conclusions 

SOTA has been developed to classify protein/DNA sequences and 
construct a phylogenetic tree by a self-organizing tree-growing 
approach, a special type of Kohonen neural mapping (Dopazo & 
Carazo, 1997). In this work  SOTA has been further developed in 
such a way that it can use directly aligned sequence as input 
(SOTA/SEQ) as well as a matrix of dipeptide composition (SOTA/ 
DP) and composition of other n-grams, such as AE12 and A2E4 
(SOTA/n-gram). For well-conserved sequences, the  usage of SOTA/ 
SEQ is recommended, and a better classification should be ex- 
pected. For diversified data sets of sequences on which a good 
alignment cannot be achieved, the SOTA/n-gram is the method of 
choice, because it is fast and does not require the sequences to be 
aligned. 

Common to the two types of SOTAs  is their ability to stop the 
classification at high taxonomy levels, a feature that  may open new 
venues in the field of classifying very large and diversified data 
sets, such as, for instance, all human sequences. 

Materials and methods 

Selforganizing tree algorithm 

A detailed description of the learning algorithm of  SOTA can be 
found in Dopazo and Carazo (1997).  The following is a brief 
summary of the procedures (Fig. 3): (1) encode input sequences: 
convert the sequences into input vectors; (2) initialize system: 
initialize the code vectors associated with each output node to 
random values; (3) run a cycle; and (4) if the end of the network 
growth is not reached, attach two new neurons to the neuron hav- 
ing the larger resource value and go to 3. 

A cycle consists of as many epochs  as necessary to get conver- 
gence in the network at a given taxonomic level. Convergence is 
achieved when the network error between two epochs is below a 
given threshold. An epoch consists of the presentation of all the 
input data (aligned sequences or n-gram composition) in the fol- 
lowing steps: 

Step 1: Compute distances to all external neurons 
(tree  leaves) 
Distance between input vector; and the neuron i is computed as 

the Euclidean distance if the input vectors are n-gram composition 
matrices, or as follows if the input vectors are sequences: 

L /  A \ 
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Fig. 3. A schematic  diagram of the dynamics of the SOTA algorithm. 

where S,[r.l] is the value for the residue r of the input sequence 
nodej at the presentation t and C;[r,  I ]  is the residue r of the neuron 
i at the presentation t ,  I accounts  for the summation over all the L 
sites of the sequence and r accounts for the summation over all the 
A entries corresponding to all the possible residues of the alphabet 
(20 + 1 for protein sequence). 

Step 2. Select output neuron i* with minimum distance dii 

Step 3. Update neuron i*  and neighbors 
Neurons are updated as: 

C;(T+ 1) = c;(T) + q,,;‘(sj - c;(T)) (2) 

where 7 is a gain term that decreases in time and depends on which 
neuron (winner, mother, or sister neuron) is updated: 

Tr.; = a;.( I - k) (3) 

where ai is the constant parameter for the updated neuron (winner, 
mother, or sister neuron), t is the total number of presentations, M, 
is the maximum number of presentations allowed and is obtained 
as p X A X L, where p is user defined initial iteration times, A is 
the number of residues in the alphabet, L is sequence length. For 
the input being matrix of dipeptide composition, both A and L are 
constant values, i.e., 20. 

At the end of each cycle, the network grows by attaching two 
new neurons to the neuron having higher resources (larger than the 
user defined resource threshold).  The resource for  a neuron is 
defined as the mean value of the distances among a neuron and the 
input sequences associated to it: 

H-C. Wang et a/ .  

K c d.TSlCi 

R .  = - 
I K (4) 

where the summation is done  over the K sequences assigned to the 
neuronj. The user-defined resource threshold controls the stopping 
of the network growth. If it  is set to zero or a small value, the 
network will grow until every input sequence is associated to a 
unique neuron, producing a complete tree. A larger value of the 
resource threshold will cause the network to stop at higher taxo- 
nomic levels. clustering in a single neuron set of sequences whose 
heterogeneity has associated a value for the neuron resources that 
falls below the threshold, and thus, building a high-level tree. 

SOTA parameters 

The following main default parameters were used in the applica- 
tion of SOTA: initial iteration time, 100; threshold, 0.001; final 
resource. 0.001 ; updating parameters for winner and its direct neigh- 
bors (mother and sister cells), 0.1, 0.05, and 0.01. A bigger itera- 
tion time is needed sometimes to achieve neural net convergence. 
The updating parameters may need adjusted to “fine tune“ the 
branch orders and produce a better classification. In all our tests 
using different combinations of the three parameters defined above, 
the relationship that, updating parameter for winner cell > updat- 
ing parameter for mother cell 2 updating parameter for sister cell. 
had to be maintained in order  for SOTA to reach convergence. On 
the other hand, increasing the value of the resource threshold re- 
sults in convergence without fully branching the sequences and, 
thus, produces a phylogenetic tree resolved at higher levels. 

Sequence encoding: n-gram method 

The n-gram method, as proposed by C. Wu for sequence encoding 
(Wu et al., 1992, 1995). extracts and counts the occurrences of 
n-gram patterns (i.e.. n consecutive residues) from a sequence 
string in a sliding window fashion. In the encoding. the standard 20 
amino  acids are defined as set A; then AI is the count of each of 
the 20 amino acids, i.e., amino acid composition of a protein: A2 
is the count of every two consecutive residues, or dipeptide com- 
position, etc. Amino acids can be grouped according to their phys- 
icochemical, structural, and evolutionary features. For example, 
one commonly used grouping  is {MILV}, {FYW},  {STPAG}, 
{DENQ}, {HRK}, {C}. The 20 amino  acids can be changed to a 
six-letter expression to reflect the exchange relationship of  the 
residues (defined as set E), and a protein sequence can be changed 
to a sequence of these six letters, then there are  counts  (or fre- 
quencies) of El ,  E2, E3, etc. The first character of the different 
types of n-gram patterns is a letter designating the alphabet set (A 
or  E); the second character is a digit representing the size (length) 
of the n-gram. Different types of n-grams can be concatenated for 
input vectors, such as A2E4 merging patterns of  A2 and E4.  and 
AE12 merging AI,  El, A2, and  E2. The  counts of the n-gram 
patterns are scaled to values between 0 and I ;  different types of 
n-grams (such as AI,   El,  A2, and E2) are scaled separately, so that 
their values will not  be skewed. 

Evaluation mechanism for classification  accuracy 

The classification accuracy is based on both the total number of 
correct phylogenetic assignments (true positive) and the total num- 
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ber of incorrect assignments (false positives). A sequence is con- 
sidered to be accurately classified if it is assigned to the correct 
phylogenetic taxa. For example, if human hemoglobin alpha chain 
is assigned to the “primate” cluster as well as the “mammalia” 
cluster, it is believed to be correctly classified; if chicken hemo- 
globin alpha chain is not assigned to the “ave” cluster but any other 
cluster, then it is wrongly classified. For every sequence that is 
correctly assigned a score of +1 is  given, and for an incorrectly 
assigned sequence a score of -0.5 was given for penalty. The 
classification accuracy is calculated as the sum of the scores for 
each taxa divided by the total number of sequences of a query 
protein family. It is measured at two stringencies: accuracy-1 cal- 
culates the accuracy based on the biggest cluster of each taxa, and 
accuracy-2 calculates the accuracy based on the two biggest clus- 
ters of each taxa. 

Self-organizing map 

The  SOM program package (version 3.1) was downloaded from the 
Web (http://www.cis.hut.fi/nnrc/nnrc-programs.htm1). The learn- 
ing process was accomplished by running the following batch file: 

randinit -din il.dat -cout il.cod -xdim 16 -ydim 16 -topol hexa 
-neigh gaussian 

vsom -din il.dat -cin ilsod -cout il.cod -den 1000 -alpha 0.05 
-radius 5 -rand 

qerror -din il.dat -cin il.cod 

vsom -din il.dat -cin il.cod -cout il.cod -rlen 5000 -alpha 0.03 
-radius 3 -rand 

qerror -din il.dat -cin il.cod 

vcal -din il.dat -cin il.cod -cout il.cod 

visual -din il.dat -cin il.cod -dout il.vs 

The program “visual” generates a list of coordinates (the final 
topology) corresponding to the best-matching unit in the map for 
each data sample in the data file. 

Data  sets 

The protein family members were retrieved from SWISS-PROT 
and other sequence databases based on sequence annotation. For 
the  cytochrome c family. sequences of cytochrome  c2,  cyto- 
chrome c550, and cytochrome c553 were removed from the data 
set. Redundant sequences were removed. Sequences having less 
than half of the average full length of the query family members 
were also discarded. The following is  a simplified list of the ID 
codes of all sequences used in this study. The real SWISS-PROT 
IDS are in capital letters. Sequences taken from other databases 
were renamed in the style of ID codes of SWISS-PROT, but in 
small letters, followed by their accession number or locus name of 
the respective database [e.g., tpis-pwoes (PIR S66212)]. 

(1) Cytochrome c. 89 CYC-*; CYCl-DROME, CYC1-YEAST, 
CYC2-ASCSU. Total 91 cytochrome c sequences were collected, 
each representing a different specie, length ranging from 93 to 1  13 
amino acids. (2) Wosephosphate isomerase (TPI). 62 TPIS-*; 
TPIC-SECCE, TPIC-SPIOL, TPIl-GIALA,  TPI2_GIALA, tpis- 

S66212), tpis-mther (GenBank accession AE000876), tpis-afulg 
- phori (DDBJ accession  AB009528), tpis-pwoes (PIR locus 

(GenBank AEOO1014). A total of 70 TPI sequences were compiled, 
the length ranging from 150 to 322 amino acids. (3) Hemoglobin 
alpha chains. 178 HBA-*;  hba-pigeon (PIRA3701  l), hba-flamin 
(PIR HAGDA), hba-turdov (PIR  S55247), hba_goose (PRF locus 
754932A), hba-caiman (PRF 0901255A), hba-ltard (PRF 
0409309A), hba-tsp (PRF 765952A). (For PRF database, see http:// 
prfsun2.prf.or.jp/index.html.) A total of 185 sequences were com- 
piled, the length ranging from  141-143 amino acids. (4) Interleukid 
receptors. 247 interleukins (IL), IL receptors, and IL-related proteins 
were compiled from the databases, the length ranging from 60 to 
918 amino acids, including the following sequences: IL-1 alpha, 
14: 1 1  ILIA-*, illa-equus (DDBJ D42146), illa-cat (GenBank 
AF047012) andilla-dog (GenBankAF047011); IL-1 beta, 13:  12 
ILlB-*, illb-equus (DDBJ D42147); IL-1 receptor antagonist, 
5:  4 IL1X-*, illx-equus (DDBJ D83714); IL-2, 17: 15 IL2-*, 
il2-seal (GenBank U79187), il2-hamst (GenBank AF0462 12); IL-3, 
10: 8 IL3-*,  il3-cjacch (PIR S42721), il3-chimpa (PIR S42720); 
IL-4, 16: 14 IL4-*, il4-equus (GenBank AF035404), il4-hamst 
(GenBank U50415); IL-5, 1 I :  8 IL5-*, il5-equus (GenBank 
U91947), il5-cat (GenBank AF05 1372), il5-guipig (GenBank 
U34588); IL-6, 18: 13 IL6-*, il6-whale (GenBank L46803), 
il6-equus (GenBank  U64794), il6-seaott (GenBank L46804), 
il6-seal (GenBank L46802), il6-woodch (EMBL accession 
Y14139); IL-7, 5: 5 IL7-*; IL-8, IO:  9 IL8-*,  il8-equus (Gen- 
Bank  AF062377); IL-9, 2: 2 IL9-*; IL-10, 17: 15 ILIO-*, 
ill0-whale (GenBank U93260), illO-hamst (GenBankAF046210); 
IL-11, 3: 3 ILI I-*; IL-12 alpha, 11: 11  I12A-*; IL-12 beta, 12: 
11  I12B-*, il2b-deer (GenBank U10160); IL-13, 3: 3 IL13-*; 
IL-14, 1: IL14-HUMAN; IL-15, 7: 6 IL15-*, ill5-rat (GenBank 
U69272); IL-16, 3:  IL16_HUMAN,  ill6-monky  (GenBank 
S80645), il16-cat (GenBank AF003701); IL-17, 4: 3 IL-17-*, 
ill7-herpe  (EMBL  Y 13183). IL-1 receptor type I, 4: 3  ILlR-*, 
illr-chick (PIR JQ1526); IL-1 receptor type 11, 4: 3 ILIS-*, 
ills-monky (GenBank U64092); IL-2 receptor alpha, 8: 6 IL2A-*, 
il2a-dog (GenBank AF056491), il2a-pig (GenBank U783 17); IL-2 
receptor beta, 3: 3 ILZB-*; IL-2 receptor gamma (cytokine 
receptor common gamma chain), 4: 4 CYRG-”; cytokine re- 
ceptor common beta chain, 2: 2 CYRB-*; IL-3 receptor alpha, 
2: IL3A-MOUSE, IL3R-HUMAN; IL-3 receptor beta, 2: 
IL3BPMOUSE, il3b-rat (PIR 156563); IL-4 receptor alpha, 3: 2 
IL4R-*,  il4r-rat (PIR S3 1575); IL-5 receptor alpha, 2: 2 IL5R-*; 
IL-6 receptor alpha, 3: 3 IL6A-*; IL-6 receptor  beta, 3: 3 1L6B-*; 
IL-7 receptor, 2: 2 IL7R-*; IL-8 receptor A chain, 5: 5 IL8A-*; 
IL-8 receptor B chain, 8: 8 IL8B-*; IL-9 receptor, 2: 2 IL9-*; 
IL-10 receptor, 2: 2 IlOR-*; IL-12 receptor, 2: 2 I12R-*; IL-13 
receptor, 3: 2 1131-*,  1132-HUMAN. 

Programs and availability 

The SOTA is a set of programs and subroutines written in ANSI-C. 
They have been implemented and tested on SGI RlOOOO server 
(IRIX6.2, 196 MHz, 768 MB memory). The SOTA result is a plain 
text file. DRAWER, a Microsoft Windows based program in Vi- 
sual C/C+ +, has been written to transfer the plain SOTA result to 
a tree graph as shown in Figure 1. These programs as well as some 
utility programs are available on the Internet by anonymous FTP 
(ftp://cnb.uam.es/pub/cnb/sota) or via World Wide Web (http:// 
www.cnb.uam.es/-bioinfo/Software/sota/sotadocument.html). 
SOTA source codes, Makefile, README, sample input/output 
files, and data files used in this study can be found in the com- 
pressed “tar” file (sotasrc.tar.gz). 
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The PHYLIP package has been used to construct phylogenetic 
trees that were then used to evaluate trees built by SOTA. A con- 
sensus PHYLIP tree is constructed following a series of execu- 
tions of PHYLIP programs: First bootstrap the data set to 100 
duplicate sets using SEQBOOT, then calculate distance matrices 
by PRODIST using Dayhoff’s method, cluster the sequences by 
the neighbor-joining method, and finally get a consensus tree by 
CONSENSE. 
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