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Abstract.—Proteins have distinct structural and functional constraints at different sites that lead to site-specific preferences
for particular amino acid residues as the sequences evolve. Heterogeneity in the amino acid substitution process between
sites is not modeled by commonly used empirical amino acid exchange matrices. Such model misspecification can lead
to artefacts in phylogenetic estimation such as long-branch attraction. Although sophisticated site-heterogeneous mixture
models have been developed to address this problem in both Bayesian and maximum likelihood (ML) frameworks, their
formidable computational time and memory usage severely limits their use in large phylogenomic analyses. Here we
propose a posterior mean site frequency (PMSF) method as a rapid and efficient approximation to full empirical profile
mixture models for ML analysis. The PMSF approach assigns a conditional mean amino acid frequency profile to each site
calculated based on a mixture model fitted to the data using a preliminary guide tree. These PMSF profiles can then be used
for in-depth tree-searching in place of the full mixture model. Compared with widely used empirical mixture models with
k classes, our implementation of PMSF in IQ-TREE (http://www.iqtree.org) speeds up the computation by approximately
k/1.5-fold and requires a small fraction of the RAM. Furthermore, this speedup allows, for the first time, full nonparametric
bootstrap analyses to be conducted under complex site-heterogeneous models on large concatenated data matrices. Our
simulations and empirical data analyses demonstrate that PMSF can effectively ameliorate long-branch attraction artefacts.
In some empirical and simulation settings PMSF provided more accurate estimates of phylogenies than the mixture models
from which they derive. [Long-branch attraction; long-branch repulsion; maximum likelihood; mixture model; posterior
mean site frequency; site heterogeneity.]

Analyzing large numbers of orthologous genes from
many taxa is necessary to resolve deep phylogenetic
problems in the tree of life including the origins of
major groups such as animals (Pisani et al. 2015), plants
(Wickett et al. 2014), fungi (Kuramae et al. 2006), the
intra-/inter-domain relationships of eukaryotes (Brown
et al. 2013), Archaea (Raymann et al. 2015), and Bacteria
(Daubin et al. 2002). Phylogenomic approaches can
drastically reduce stochastic errors associated with small
data sets used in traditional phylogenetic studies and
have led to substantial advances in our knowledge
of the tree of life (Delsuc et al. 2005; Philippe et al.
2011). Unfortunately, merely increasing the number of
sequences in the analysis is sometimes insufficient to
resolve many difficult phylogenetic questions (Philippe
et al. 2011). In addition to sequence alignment quality
control, proper taxon and gene sampling, and outgroup
choice, it is crucial to use models that can faithfully
capture the underlying amino acid substitution process
in phylogenomic analyses.

The substitution process at an individual alignment
position (site) in a protein is often mathematically
modeled as a stochastic Markov process with an
empirically-defined single rate matrix of amino acid
exchangeabilities (e.g., the JTT matrix of Jones et al.
1992, the WAG matrix of Whelan and Goldman 2001 or
LG matrix described in Le and Gascuel 2008) and the

stationary frequencies of the amino acids in the data. The
process at different sites is traditionally considered as
homogeneous whereby the same process operates over
all sites with the exception of variable evolutionary rates
amongst sites which is modeled by a gamma distribution
discretized into a few rate categories of equal probability.
While site-homogeneous models are computationally
efficient and have been widely used for phylogenetic
inference, they are not biologically realistic. Different
sites in proteins have different structural or functional
constraints that result in different preference for specific
amino acids at sites. Some sites can be occupied by
almost any residue, while others appear to be restricted
to a limited subset of amino acids or just one particular
residue (Halpern and Bruno 1998; Lartillot and Philippe
2004; Lartillot et al. 2007; Wang et al. 2008). Such site-
specific amino acid preferences are not captured by the
standard empirical rate matrices. Indeed it was shown
that the number of amino acid states at a given site in
real data sets is, on average, smaller and the frequencies
of these states are less uniform than those expected under
JTT+F+� (Lartillot et al. 2007; Wang et al. 2008). Halpern
and Bruno (1998) showed that site-homogeneous models
tend to underestimate long distances between the
sequences more than short distances when the data
sets are simulated under site-specific frequency profiles.
In other words, site-homogeneous models are sensitive
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to mutational saturation of the sequences whereby
it is difficult to distinguish true phylogenetic signal
from homoplasy (i.e., multiple independent origins of
the same character state at a homologous position in
different lineages). Such sensitivity tends to lead to
long-branch attraction (LBA) artifacts in phylogenetic
estimation (Lartillot et al. 2007; Wang et al. 2008).

To address these issues, partitioned (Yang 1996; Pupko
et al. 2002; Lanfear et al. 2012) and mixture models
(Lartillot and Philippe 2004; Le et al. 2008a, 2008b;
Wang et al. 2008) have been developed to account for
the substitution heterogeneity across genes and sites
respectively. A widely used site-heterogeneous model is
CAT, a Bayesian mixture model which assumes each site
has its own set of equilibrium amino acid frequencies
(Lartillot and Philippe 2004). The equilibrium frequency
vectors are independently and identically drawn from
an unknown distribution, which is nonparametrically
estimated using a Dirichlet process model. The CAT
model has been implemented in Phylobayes (Lartillot
et al. 2013) in a Markov chain Monte Carlo (MCMC)
framework to allow joint estimation of the mixture
components and the exchange rate matrix for a given
data set. The resulting CAT+GTR model has been shown
to not only fit data better than the site-homogeneous
models but also alleviate LBA bias (Lartillot et al. 2007).
The model has since been widely used for phylogenomic
reconstruction and helped resolve some long-standing
phylogenetic questions (e.g., Struck et al. 2011). However,
a common concern with this approach is that the MCMC
chains have convergence difficulties for large data sets
(Kocot et al. 2011; Pisani et al. 2015; Whelan et al. 2015;
Whelan and Halanych 2016), which limits its application.

Models accounting for site heterogeneity in maximum
likelihood framework include a mixture of the
substitution rate matrices predefined for different
secondary structures and surface accessibility (Goldman
et al. 1998; Le et al. 2008b; Le and Gascuel 2010), or
for different site rates (Le et al. 2012) and a mixture of
amino acid site frequency profiles (Wang et al. 2008,
2014; Le et al. 2008a). The latter approaches have been
implemented in QmmRAxML (Wang et al. 2008), PhyML
(Guindon et al. 2010) and IQ-TREE (Nguyen et al.
2015). To ease the computational burden, fixed empirical
amino acid frequency vectors are used rather than
being estimated from the data. Several such empirical
frequency profiles (cF4, C10, C20 to C60) have been
proposed (Le et al. 2008a, 2008b; Wang et al. 2008,
2014). Both simulation and empirical studies have shown
that the profile mixture models are more robust against
the LBA bias than the single profile model that uses
the overall data set frequencies or the equilibrium
frequencies of the amino acid exchange rate matrix
(Wang et al. 2008). However, relative to an analysis with a
single frequency vector, RAM usage and computational
time are effectively multiplied by k, where k is the
number of components in the mixture. Except for the
mixtures of structural matrices (e.g., EX2 and EX_EHO)
or mixtures of four matrices for different site rates
(such as LG4M and LG4X) that are relatively fast

(Le and Gascuel 2010; Le et al. 2012), the mixture
models with larger numbers of classes can become
intractable to perform complete standard nonparametric
bootstrap analyses, including tree searching, for very
large phylogenomic data sets even when parallel or
multicore implementations are used. In this study we
propose several new models to approximate the profile
mixture models and show that they are approximately
k/1.5 faster than the profile mixture models and reduce
the memory use by a factor of nearly k (when the number
of taxa is larger than 30).

MATERIALS AND METHODS

Modeling Site Heterogeneity: Posterior Mean Site Frequency
and Posterior Maximum Site Frequency

A natural estimate of the frequency vector for a site
is given by the observed frequencies of amino acids.
However, such an estimate has several shortcomings.
First, no adjustment is made for rate variation or
phylogenetic relatedness of the taxa. For low rate sites,
this leads to some amino acids occurring at inflated
frequencies and others to have lowered frequencies
relative to the true stationary distribution. Furthermore,
unless the number of taxa is large and due to a positive
dependence in amino acid presence for taxa related
on a tree, there is a bias towards frequency profiles
with a number of zero frequencies. Finally, experiences
in simpler settings with numbers of parameters that
increase as sample size increases (Neyman and Scott
1948) suggests that completely separate frequency
estimates at each site may give rise to poor statistical
properties. Indeed, Rodrigue (2013) noted such problems
in obtaining reasonable parameter estimates when using
ML to estimate site-specific amino acid frequencies in
mutation-selection models.

In order to ensure that frequency estimates are
nonzero and to avoid some of the other difficulties due
to sparseness alluded to above, we introduce posterior
mean site frequency (PMSF) which is computed
under a mixture model given a guide tree. This
effectively smooths the frequencies, making them more
homogeneous, borrowing information from other sites
rather than using sparse information from the site
at hand. Specifically, the posterior probability for
component j (1� j�k) in the mixture is computed as

P
(
j|x)= wj ×P(x|j)∑

j wj ×P(x|j) , (1)

where the wj are the weights of the mixture component
j and P(x|j) is the probability of site pattern x under
component j. The PMSF for site pattern x is defined by:

fa(x)=
∑

j

faj ×P
(
j|x), (2)

where a indexes 20 amino acids and faj is the frequency
for amino acid a in the mixture component j. While there
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are a finite number of faj, the P(j|x) will vary over different
x, giving different PMSFs for different sites.

For brevity we sometimes refer to PMSF as a model
much like one would refer to LG+F as a model. More
precisely, PMSF refers to both a method of estimation
and a model that allows frequencies of amino acids
to vary over sites and not necessarily in a manner
consistent with a finite mixture. Indeed, an advantage
with the PMSF is that it allows continuous variation
of frequency vectors over sites. While mixtures with a
finite number of classes are necessary for computational
reasons, the uniqueness of the structural and functional
constraints of sites in proteins suggests frequency vectors
are better modeled as a continuous variation. Posterior
means will tend to show continuous variation across
sites; such behavior has been shown for posterior mean
rate estimates calculated under a finite mixture by Susko
et al. (2003).

An alternative approach considered in examples
replaces (2) with posterior mode frequencies; we refer
to such estimates as MAX estimates. For a give site
pattern x, fa(x) is set to faj(x), where j(x) is the mixture
component having the largest posterior probability
P(j|x). By contrast with PMSF, which assigns distinct
frequency vectors to each site having a distinct site
pattern, the number of unique MAX frequency vectors
assigned to sites is at most the number of components
k, independent of the alignment length. This leads
to computational advantages compared with PMSF
because, for any given edge, at most k×r substitution
matrices need to be calculated where r is the number of
site rate categories in the discrete gamma model.

Computational Efficiency of PMSF
Savings in runtime.—Computational savings arise for
PMSF by comparison with a mixture model because
rather than averaging the site-likelihoods over k
frequency vectors as in a mixture model, the likelihood
computation at a site uses one single frequency vector
for each site likelihood calculation. On the other hand,
PMSF has an additional start-up cost by comparison with
single matrix models or mixtures that is due to obtaining
eigen-decompositions of the rate matrices. The O(c3) cost
of these decompositions must be repeated at each site
where c=20 is the number of character states. Once this
calculation is complete, however, it need not be repeated
as additional trees are considered. Since the bulk of
the computation in the course of considering multiple
trees is devoted to likelihood evaluations, we compare
computational cost of likelihood evaluation, assuming
eigen-decompositions of the rate matrices. Regardless of
the calculation—LG+F+�, PMSF or mixture—the total
computational cost of likelihood evaluation is n×r times
the cost of likelihood evaluation at a site and for a
given rate category, where n is the number of unique
site patterns and r the number of rate categories. Thus
we need only compare the relative costs for a given
site and rate category. The relative computational costs

are calculated in the appendix and give that LG+F+�
is expected to be at most 1.5 times as fast as PMSF
and PMSF is expected to be at least k/1.5 times as
fast as a k-component mixture. While it may seem that
PMSF should give a cost comparable to LG+F+�, some
exponentiation and multiplication operations need to be
repeated over sites for PMSF but not for LG+F+�.

Savings in RAM usage.—The single matrix model
requires n×r×c×(m−2) RAM to store the conditional
likelihood vectors, where m is the number of taxa. The
PMSF approach needs to additionally store the rate
matrices, eigenvectors and inverse eigenvectors for all
sites, which amounts to 3×c2 ×n. Therefore, compared
with single matrix model the RAM usage under PMSF
is multiplied by the following factor:(

1+ 3c
r×(m−2

)
)

. (3)

As m increases, the factor in (3) converges to 1, indicating
the PMSF will use the same amount of the RAM as a
single rate matrix model.

Note that while there are substantial savings in both
RAM and runtime for tree-searching under PMSF,
the full mixture models are required to derive these
models in the first place by fitting on a “guide tree”
thereby requiring the extra runtime and attendant RAM
resources for the full mixture for this step (although
see the memory saving technique described below).
Nevertheless, for larger data sets this fitting phase is
relatively quick compared with the tree-searching and
bootstrapping phases of the analyses.

Software Implementation and Bootstrap Analysis
We have implemented the site-specific PMSF

and MAX models in the phylogenetic inference
program IQ-TREE (Nguyen et al. 2015), freely available
at http://www.iqtree.org. To speed up likelihood
computations, IQ-TREE employs vector operations and
OpenMP (Open Multi-Processing), which parallelizes
the computations over CPU cores. The PMSF or MAX
models are executed by specifying a profile mixture
model and a guide tree. The mixture model will first
be fit on the guide tree and then the PMSF or MAX
frequency profiles will be calculated. These site-specific
profiles will then be used for site-likelihood calculations
in an ML tree search using the standard methods
available in IQ-TREE. Alternatively, one can use the
−fs option in IQ-TREE to input their desired site
frequency profiles instead of the guide tree, so that
other approaches of obtaining site frequencies can be
tested and trees are inferred.

To reduce the RAM requirement for the first fitting
step of the mixture model, IQ-TREE implemented a
memory saving technique (Izquierdo-Carrasco et al.
2012), where the minimal RAM consumption for
likelihood computations is proportional to log2(m)
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TABLE 1. Notation of PMSF and MAX models

Model Guide tree Study cases

PMSF0; MAX0 Known wrong tree corresponding to the LBA tree or the LBR tree
depending on the setting

In simulation

PMSF1; MAX1 Known true tree In simulation
PMSF2 ML tree estimated under LG+F+� In simulation and empirical cases
PMSF3 ML tree estimated under LG+C20+F+� In simulation and empirical cases

instead of m. This increases the computation time for
the fitting step, but the extra time is small compared
with the subsequent tree search. Moreover, IQ-TREE
automatically adjusts the memory usage depending on
the available computer RAM.

As the PMSF and MAX models have substantial
computational savings in runtime, it is possible to
conduct the standard nonparametric bootstrap analysis
under the new models; this is infeasible for full profile
mixture model with many components. To further ease
the computational cost for bootstrap analysis under
PMSF (or MAX), instead of refitting a full mixture model
(e.g., LG+C20+F+�) to compute the PMSF profile for
every bootstrap replicate, the site patterns and their
associated PMSF frequency vectors were resampled from
the original alignments. The resampled PMSF profiles
are then applied to compute the bootstrap trees for the
corresponding bootstrap replicate. Experiments showed
that a full refitting of PMSF for each bootstrap replicate
yielded nearly identical results to this “resampled PMSF
strategy”.

PMSF Model Notation
The PMSF posterior site frequency vectors are derived

from a full profile mixture under a predefined guide
tree. In the following simulation and empirical studies
we will usually fit the LG+C20+F+� mixture to obtain
the PMSF profiles. In a few cases the JTT+C20+F+� or
LG+C60+F+� mixtures are used but such exceptions
will be specified in the text. Based on the guide tree, we
assign a digit number to the PMSF model to simplify the
model notations (Table 1).

Simulated Data
Four taxa simulation under LG+C20+F+�.—One of the
most commonly reported difficulties in phylogenetic
estimation is LBA bias (Felsenstein 1978). To evaluate
relative performance of the methods in LBA settings,
we simulated protein alignments from four taxon trees
having two long external branches separated (Fig. 1
upper panel—LBA simulations). Since methods that
perform well in LBA settings might do so as a
consequence of a bias towards trees with long branches
apart (i.e., a long branch repulsion [LBR] bias; Susko
et al. 2004), we also simulated data from trees of 4 taxa
having two long external branches together (Fig. 1 lower

panel—LBR simulations). The long branches varied in
length from 0.1 to 1.0 with an increment of 0.1 and
the short branches varied from 0.01 to 0.1 with an
increment of 0.01. The internal branch has the same
length as the two short external ones. For both LBA
and LBR cases the sequences were simulated under
LG+�4 (4 discrete gamma rates and alpha = 0.75) with
a modified version of Seq-gen (Rambaut and Grassly
1997) that was adapted to generate sequence alignments
under site-specific frequency profiles (SiteSpecific.seq-
gen; http://www.mathstat.dal.ca/~hcwang/Procov/).
The site-specific simulations were based on a 21-
component mixture with 20 components from the
C20 frequency classes (Le and Gascuel 2008) plus an
additional class for the stationary amino acid frequencies
of the LG matrix (LG+C20+F+�; Wang et al. 2014).
Two sequence lengths were simulated for each data
set: a short one with 1050 alignment sites (50 sites per
frequency class) and a long one with 21,000 sites (1000
sites per frequency class). For each case, 100 data sets
were generated for each pair of the long branch length
(a) and short branch length (b) setting.

We then used the LG+F+�, LG+C20+F+�, and PMSF
models separately to estimate the ML trees with IQ-
TREE. To investigate the impact of using both good and
poor guide trees to fit the mixture model initially for the
PMSF model, we considered results when the guide tree
was always the correct tree (PMSF1) and results when the
guide tree was always a wrong tree (PMSF0). These two
guide trees represent the best and worst scenarios that
a PMSF model will be based on, although it is usually
not possible to use the “correct tree” as guide tree for
empirical data analysis. Therefore, we also used the ML
tree estimated under the simpler LG+F+� as the guide
tree (PMSF2) to evaluate the performance of PMSF on the
simulated data. The results are summarized with heat
maps.

Each cell of the heat map gives the accuracy of the
estimation (i.e., the proportion of times the correct
tree was estimated out of 100 simulations) when the
corresponding a (y-axis) and b (x-axis) values were the
branch lengths of the generating trees.

Four taxa simulation under LG+F+�.—For the two
generating trees shown in Figure 1 we also simulated
sequences under LG+F+� (with alpha = 0.75) to study
the impact of overfitting, i.e., when the data are analyzed
under the more complex LG+C20+F+� mixture and
PMSF models. 100 short (1000 sites) and 100 long (20,000
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FIGURE 1. Four taxon generating trees used for simulation to induce long-branch attraction (LBA: upper panel) or long-branch repulsion
(LBR: lower panel).

sites) alignments were simulated for each pair of branch
lengths a and b.

Four taxon simulation under LG+C60+F+�.—Since real
phylogenomic data are expected to have a larger range
of site frequency profiles than the empirical profile
mixture models, we further simulated data for the
LBA and LBR cases under the most complex available
empirical mixture model: the LG+C60+F+� model (4
discrete gamma rates and alpha = 0.75) which had
61 frequency profiles. This allowed us to evaluate the
relative performance of the various methods when the
fitted mixture model (e.g., LG+C20+F+�) is much
simpler than the generating model. A total of 345 sites
were simulated for each of the C60+F components
(the alignment has 21,045 sites) and 100 data sets were
simulated for each pair of the long and short branches
settings.

Simulation under 8-, 12-, 16-, and 20-taxon trees.—The
foregoing simulated data sets were based on four taxon
trees. As the number of taxa increases, more site-
specific information is available for frequency estimation
and performance of PMSF models can be expected to
improve. To investigate, we simulated one LBR case
where a=0.4 and b=0.15 under LG+C20+F+� for trees
of 8-taxa, 12-taxa, 16-taxa and 20 taxa. The branch lengths
a and b were so chosen as it was found to be difficult
for the PMSF and MAX models to correctly estimate the

right tree in 4-taxon simulation and LBR was rampant
in this setting. An 8-taxon tree (Fig. 2) is obtained from
the 4-taxon tree by bisecting four external edges at their
midpoints. The A, B, C, and D taxa groups are similarly
arranged in simulating under the 12-, 16-, and 20-taxa
trees; as more taxa are added, they are added to a
polytomy halfway along the external edges. In each
simulation, ML scores were computed for the three
topologies that differ by one split: AB|CD, AC|BD or
AD|BC. Each topology was constrained to have taxa
within groups of A–D appear together and, as in the
generating model, internal edge lengths within the A–
D groups were set to 0. All terminal edge lengths and
other internal edge-lengths were estimated by ML. One
hundred data sets were simulated for each generating
setting and the ML scores for the three fixed topologies
were compared to obtain counts of the number of times
the correct trees had the largest score. Similarly, since
the simulations showed (see the results below) that the
LG+F+� model has substantial LBA bias under the
LG+C20+F+�–simulated data for the 4-taxon trees, we
investigated whether adding more taxa in the simulation
would help alleviate the bias. We simulated 100 data
sets each under 8-taxa, 12-taxa, 16-taxa and 20-taxa trees
with the long branch a being 0.4 and the short branch b
being 0.015. The generating trees are similar in structure
to those in Figure 2 except that taxa group A has long
branches and taxa group D has short branches so that the
LBA bias can be induced. The LG+F+�, LG+C20+F+�,
and PMSF models were applied to the simulated data to
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FIGURE 2. An 8-taxon tree (left) and a 20-taxon tree (right) used for
simulating LBR. The branch lengths are not drawn to scale. The long
branches have a length of 0.4 and the short branches have a length of
0.015. Simulating trees of 12 and 16 taxa have similar structure, adding
more taxa to the groups of A, B, C, and D.

get the likelihood scores for the three constrained trees
in a similar manner to the LBR case.

Simulation under structure-based mixture models.—The
above simulated data are all based on a single amino
acid replacement matrix—the LG rate matrix—with
different site-frequency profiles. Le and Gascuel (2010)
found that models accounting for solvent accessibility
and secondary structures are highly beneficial in
protein phylogenetics; these models were constructed
by estimating both exchangeabilities and frequencies
for sites falling into each of the various structural
classes based on a large empirical data set of proteins
with known structures. They derived six rate matrices:
BUR-EXT: buried residues and extended structure; BUR-
HEL: buried residues and helical structure; BUR-OTH,
buried residues and other structures; EXP-EXT: exposed
residues and extended structure; EXP-HEL: exposed
residues and helical structure; and EXP-OTH, exposed
residues and other structures. For the 4-taxon LBA
and LBR cases (Fig. 1) we simulated 1000 sites under
each of the six models and concatenated them into
alignments of 6000 sites for each of the a and b settings.
One hundred data sets were simulated for each setting.
Tree searches were then conducted under the LG+F+�,
EX_EHO+F+�, LG+C20+F+�, and PMSF models.

Empirical Data
Three hundred HSSP structure-sequence alignments.—In
developing various site-heterogeneous models Le and
Gascuel et al. used 300 sets of the HSSP protein
alignments (Sander and Schneider 1994) as test data (Le
et al. 2008b; Le and Gascuel 2010; Le et al. 2012). It
is of interest to evaluate the performance of PMSF on
these single protein data sets and to compare it with the
previous results under different models. We applied the
LG+ F+�, LG+C20+F+�, and PMSF models to the 300
data sets to estimate ML trees.

Five empirical phylogenomic data sets.—Five empirical
multiprotein concatenated data sets are analyzed with
the new models. The first “angiosperm” data set is a
concatenation of 61 chloroplast protein sequences from
Amborella, Nymphaea (water lilies) and 12 other land
plants consisting of 24 taxa and 15,688 sites that was used
to identify the deep splits in the angiosperm phylogeny
(Leebens-Mack et al. 2005). In the latter study, a basal
clade of Amborella + water lilies was inferred under ML
for the nucleotide sequences, while ML estimation under
JTT+I+� for the protein sequences placed Amborella
alone as the deepest diverging taxon.

The second data set was from Brinkmann et al.
(2005) and was made up of 24,291 aligned sites
from 133 concatenated proteins. This data set had 40
taxa including a fast-evolving microsporidian species
(Encephalitozoon cuniculi), 33 slow-evolving eukaryotic
ingroup species and six archaea as outgroup taxa. When
analyzed under single rate matrix models (e.g., JTT or
WAG), instead of emerging in the correct position as a
sister to fungi, E. cuniculi was positioned at the base of
the eukaryotes, branching with the archaeal outgroup,
apparently because the extremely long branch leading
to E. cuniculi was attracted to the long branch separating
the eukaryote ingroup and the archaeal outgroup.
Brinkmann et al. (2005) showed that the LBA effect
was reduced when the fastest-evolving Microsporidia
proteins were gradually eliminated from the alignment.
In the absence of the LBA bias, Microsporidia correctly
branched with fungi.

The next two data sets are named based on the
long-branched metazoan subgroups in the data sets
that had controversial placements. One of these is
the “nematode” data set (37 taxa 35,371 sites from
146 proteins) and the other is the “platyhelminth”
(flatworms) data set (32 taxa 35,371 sites from the
same 146 proteins). Lartillot et al. (2007) found the
phylogenetic positions of these long-branched taxa
depended on the outgroup when single-matrix models
(e.g., WAG) were used. When fungal sequences were
used as a distant outgroup of metazoans, the nematodes
or platyhelminths branched with the outgroup to the
exclusion of an arthropods plus deuterostomes clade
(the so-called “Coelomata” group) as a result of an
LBA artefact. However, when two choanoflagellates
and a cnidarian were added to the outgroup to
break up the long branch separating the ingroup
and outgroup, nematodes and arthropods formed
an “Ecdysozoa” clade (Aguinaldo et al. 1997) with
deuterostomes splitting from other Metazoa at the
deepest node. Similarly with the addition of the same
three species to the fungal outgroup, platyhelminths and
arthropods formed a “Protostomia” clade (Telford et al.
2015). Lartillot et al. (2007) showed that under a site-
heterogeneous CAT+Poisson+� model (Lartillot and
Philippe 2004), the Ecdysozoa or Protostomia clade was
recovered for the two data sets respectively, regardless
which of the two outgroups was used, effectively
overcoming the LBA bias in both cases. It is interesting
to see if the new PMSF models can also overcome the
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LBA bias in the nematode and platyhelminth data sets
and for this we will analyze the two more difficult cases
where only the most distantly-related fungi are used as
the outgroup.

The fifth data set we considered was that of Brown
et al. (2013) which has 68 taxa and 43,615 sites from
159 proteins. Analyses of these data showed that two
enigmatic microbial eukaryote lineages, the breviates
and the apusomonads, grouped with animals and fungi
(opisthokonts) to form a major eukaryotic assemblage
called Obazoa (Brown et al. 2013). However Brown
and colleagues showed that the precise position of the
breviates within Obazoa depended on the phylogenetic
model: ML and Bayesian analyses using single-matrix
models (e.g., LG+F+�) recovered a clade of breviates (B)
plus apusomonads (A) to the exclusion of opisthokonts
(O) (the ((A,B),O) topology). Phylogenies inferred with
the CAT+GTR+� model in Bayesian analysis (Brown
et al. 2013), or ML analysis with site-class mixtures
including LG+C20+F+� instead showed A and O as
sister groups with the breviates at the base (the ((A,O),B)
topology). The latter topology appeared to be most likely
correct for the reasons discussed in Brown et al. (2013).

For each of the five data sets we first conducted
model selection with IQ-TREE and found that whereas
JTT amino acid replacement matrix fits best to
the angiosperm data set (according to the Bayesian
information criterion), the LG matrix is best for
the other four data sets. We therefore conducted
tree searches under JTT+F+�, JTT+C20+F+�, and
JTT+PMSF+� for the angiosperm data set and LG+F+�
and LG+C20+F+� and LG+PMSF+� for the other
data sets. Two PMSF implementations were considered
that differed in their guide trees. PMSF2 was based
on the ML trees estimated under JTT (or LG)+F+�,
while PMSF3 was based on the tree estimated under
the C20+F mixture. Furthermore, for each of the five
data sets we conducted the standard nonparametric
bootstrap analysis (STNboot) each with 100 replicates
and the ultrafast bootstrap analysis (UFboot; Minh et al.
2013) with 1000 replicates for the JTT (or LG)+F+�
and JTT (or LG)+�+PMSF models. As nonparametric
bootstrap analysis under C20+F or C60+F mixtures
cannot be finished within a reasonable time, the UFboot
approximation with 1000 replicates was performed for
the mixture models. Finally, we also conducted Bayesian
analyses under a CAT+GTR+� model with PhyloBayes-
MPI (Lartillot et al. 2013) for the Angiosperm and
Microsporidia data sets. Bayesian analyses under this
model for the other data sets have already been carried
out and published (Lartillot et al. 2007; Brown et al. 2013).

RESULTS

Runtime and RAM Usage
To evaluate the relative running times of these various

models in tree estimation, we used the Obazoa data
set from Brown et al. (2013) to benchmark the time

TABLE 2. Running time and RAM usage for tree search on the
Obazoa data (68 taxa 43,615 sites)

Models CPU time RAM (MB)

LG+F+� 5h:18m:55s 1768
LG+C20+F+� 6 days:0h:23m:3s 37,141
LG+C60+F+� 16 days:19h:12m:0s 107,888
LG+PMSF2+� 17h:29m:2sa 2160

Note: All the runs were conducted using a single core with IQ-TREE
(version 1.5.1) on a computer cluster.
aPMSF required a small amount of time to initially fit guide tree under
the LG+C20+F+� mixture and to get the PMSF profiles; this was
counted in the CPU time shown. For this data set, this overhead is
14.5% of the total computing time for PMSF2.

usage and memory required for ML tree estimation
under several models in IQ-TREE (Table 2). The CPU
time for tree searching under the LG+C20+F+� mixture
model was 27.2 times that of the LG+F+� model. The
LG+C60+F+� model spent 75.9 as much time as the
latter. By contrast, PMSF2 required 3.3 times as much
time as LG+F+�. It was 8.3 and 23.1 times faster
than LG+C20+F+� and LG+C60+F+�, respectively. In
terms of computer memory usage, the LG+C20+F+�
mixture model used 20 times more RAM than the LG
model while PMSF used only 22% more RAM than the
LG model. As expected the LG+C60+F+� model used
nearly three times of both RAM and computing time
than the LG+C20+F+� mixture. The results indicate
that PMSF has substantial computational advantages
over the full mixture models.

Bootstrap Analysis Under PMSF
We tested three bootstrap analysis methods under

PMSF, including: 1) the standard nonparametric
bootstrap analysis that (a) refits LG+C20+F+� for
each pseudoreplicate to get new bootstrap PMSF
profiles for each of the resampled sites and (b)
obtains the estimated bootstrap tree under PMSF; 2) a
short-cut nonparametric bootstrap that does not refit
LG+C20+F+� model for each pseudoreplicate but is
otherwise the same as 1); and 3) an ultrafast bootstrap
analysis (Minh et al. 2013). We applied the three methods
to one HSSP data set with 19 taxa and 489 sites
(Ord024_2h4m.all_gb.phy from Le and Gascuel 2010).
The ML tree with the three sets of bootstrap values
is shown in Supplementary Figure S1 available on
Dryad at http://dx.doi.org/10.5061/dryad.gv1q5. The
bootstrap values obtained from the two nonparametric
bootstrap methods are nearly identical (P-values for
all splits that had a different BP were >0.09 and
therefore not significantly different, using a test of
marginal homogeneity for paired samples; Kalbfleisch
1985). The ultrafast BPs, although correlated with
the nonparametric BPs in general, were always
larger and, for four splits, significantly differed
from the nonparametric BPs (all P-values were
<0.05 based on tests comparing two proportions
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FIGURE 3. Proportions of correctly estimated trees under the various models in LBA simulations (21,000 sites in each data set) under
LG+C20+F+� with “a” branches on the y-axis and “b” branches on the x-axis. All models contain +� which is omitted for title brevity.

of independent samples). Therefore, the short-cut
nonparametric bootstrap approach is a valid and fast
alternative to the standard nonparametric bootstrap
approach and will be used throughout the paper.
It is also implemented in IQ-TREE as the default
nonparametric bootstrap method for PMSF.

Simulated Data
Under the LBA-simulation conditions.—For the data
simulated under LG+C20+F+� for the LBA-inducing
four taxon trees (Fig. 1 upper panel), ML trees were
estimated under the various models and the proportions
of the correctly estimated trees were plotted as a function
of the branch lengths a and b on heat maps. Figure 3
shows the simulations for 21,000 sites in each data
set. Under LG+F+�, the upper left area of the heat
map shows an increasingly high proportion of incorrect
trees as the long “a” branches increase and the short
“b” branches decrease, revealing the typical LBA bias
pattern. Tree estimations were 100% correct under the
LG+C20+F+� mixture and PMSF, no matter which
guide tree was used (Fig. 3). The MAX0 and MAX1
models also obtained 100% accuracy (figures not shown).

In Figure 3 the largest a/b ratio is 100 when a=1,
b=0.01 and both the C20 mixture and PMSF models

showed no LBA bias. When the a/b ratio gets even
larger the proportion of correct estimations under the
LG+C20+F+� model decreases but remains large under
the PMSF (Table 3). In this setting, the LG+F+� model
always estimated the LBA tree.

For the LBA simulation with much shorter alignments
(1050 sites), the LG+C20+F+�, PMSF0, and PMSF1
models exhibit a relatively small LBA bias, and much less
than that of LG+F+� (Supplementary Fig. S2 available
on Dryad). The fact that the LBA is not present for PMSF
for longer alignments suggests statistical consistency. In
contrast, the LG model under these conditions, likely
exhibits the LBA form of inconsistency.

LBA simulation under LG+F+�.—So far, the data were
generated under the site-heterogeneous LG+C20+F+�
model and, not surprisingly, the results showed that
the correctly specified LG+C20+F+� mixture model
outperformed LG+F+� in reducing LBA bias. On the
other hand, the better performance of PMSF relative
to LG+C20+F+� (Supplementary Figure S2 available
on Dryad and Table 3), even when the incorrect
guide tree was used was unexpected. It remains to be
seen whether PMSF works as well for a simpler but
standard simulation setting. Supplementary Figure S3
available on Dryad shows the results for data simulated
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TABLE 3. The proportions of estimated correct trees and LBA trees for different a/b ratios in 4-taxon LBA data (21,000 sites) simulated under
LG+ C20+F+� and estimated under LG+ C20+F+�, PMSF2 (the LG tree as the guide tree) and PMSF3 (the C20+F tree as the guide tree)

a/b ratio LG+ C20+F+� PMSF2 PMSF3

Correct tree (%) LBA tree (%) Correct tree (%) LBA tree (%) Correct tree (%) LBA tree (%)

a=1, b=0.01 100 100 0 100 0 100 0
a=2, b=0.01 200 58 42 97 1 98 1
a=3, b=0.01 300 39 59 90 1 89 1

FIGURE 4. Proportions of correctly estimated trees under the various models in simulating LBR cases (21,000 sites) under LG+C20+F+�.

under LG+F+� when the ML trees were inferred
under LG+F+�, LG+C20+F+�, and PMSF2. For the
1000-sites data all three models had a small LBA
bias but the LG+F+� appeared slightly more biased
than PMSF2 and C20+F, even though the LG model
was the generating model. This suggests that PMSF
and mixture models are more resistant to LBA than
the LG model. When the sequence lengths increase
(20,000 sites), all models always estimated the true
tree (Supplementary Fig. S3 available on Dryad). As
expected, as the sequences get longer, the estimated
weights for the F component under the C20+F model
get larger, effectively converging upon the simpler nested
LG+F+� model; the estimated average F weight for the

1000-sites data was 0.85 ± 0.06 which increased to 0.95
± 0.01 for the 20,000-sites data.

LBR-simulation conditions.—Figure 4 shows the heat
maps of the proportions of correctly estimated trees for
the various models under the LBR simulation conditions
(Fig. 1 lower panel) for 21,000 sites. There is no LBR-bias
in tree estimation under LG+F+�. By contrast the correct
LG+C20+F+� model, which was used to generate the
data, shows a mild LBR bias in the top left corner of
the heat map (branch a is much longer than b). Both
LG+PMSF0+� and LG+PMSF1+� models showed an
even more pronounced LBR bias, and the MAX0 and
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FIGURE 5. Proportions of correctly estimated trees under the various models in simulating LBA cases under LG+C60+F+�.

MAX1 models performed substantially worse. PMSF2
(i.e., using the LG+F+� tree as guide tree for PMSF
estimation), was essentially equivalent to using the true
tree as the guide tree, and had the same performance as
PMSF1 in Figure 4 (not shown).

For the 4-taxon LBR simulation conditions, when
the simulated sequences are shorter with 1050 sites,
the LG+F+� model still shows no LBR bias but
LG+C20+F+� and especially PMSF display this bias
(Supplementary Fig. S4 available on Dryad) to a degree
that is notably worse than for the 21,000-sites simulation
(Fig. 4). That bias reduces as sequence length increases
indicates that estimation with PMSF improves with the
number of sites, which is suggestive (but not proof) of
statistical consistency in this setting.

LBR simulation under LG+F+�.—We also simulated the
data under LG+F+� for the LBR-inducing condition for
1000 sites and 20,000 sites respectively and estimated
under LG+F+�, LG+C20+F+� and LG+PMSF2+�. For
both sequence lengths (Supplementary Fig. S5 available
on Dryad lower and upper panels), the LG model is

the least LBR biased and the PMSF2 model is the most
biased. However, for the longer sequences the LBR bias
under all models is reduced.

Simulation with a more complex mixture (LG+C60+F+�)
under LBA conditions.—In reality, almost every variable
site in a protein family is subject to a unique set of
structural and functional constraints that will manifest
in a unique stationary amino acid frequency profile.
To investigate the performance of smaller dimensional
mixtures for cases in which the true simulating model
is more complex as it is for real protein families, we
simulated data under the 61 component LG+C60+F+�
model and used simpler models for estimation over
the branch length grid (Fig. 5). The LG+F+� model
again shows a substantial LBA bias. The LG+C20+F+�
is also LBA biased in this case, but to a lesser extent.
Interestingly, PMSF1 shows no LBA bias and PMSF0
shows only a slight bias. PMSF2 shows the same results
as PMSF0 (figure not shown). The MAX0 and MAX1
variants are slightly worse than the PMSF counterparts
but still perform better than the LG+C20+F+� mixture
model.
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FIGURE 6. Proportions of correctly estimated trees in simulating LBR cases under LG+C60+F+� and estimated under PMSF0 and MAX0.

Simulation with a more complex mixture (LG+C60+F+�)
under LBR conditions.—For the simulations employing
LG+C60+F+� under LBR conditions, the estimated
trees are 100% correct in all regions of the investigated
parameter space when estimated under LG+F+�,
LG+C20+F+�, PMSF1, and MAX1 (figures not shown).
PMSF0 exhibits a small LBR bias which is more
substantial under MAX0 (Fig. 6). The PMSF and MAX
models are all derived under LG+C20+F+� with the
correct guide tree (for PMSF1 and MAX1) or the wrong
guide tree (for PMSF0 and MAX0). PMSF2 and MAX2
with the LG tree as guide tree, which is the true tree
in all settings tested, also estimated 100% correct trees
like PMSF1 and therefore showed no LBR bias in this
simulation.

Taken together, for the data simulated under
LG+C60+F+�, the PMSF1 model (based on the true
guide tree and derived from the LG+C20+F+� mixture)
performed best among all the models for both the LBA
and LBR cases. Even PMSF0, based on the incorrect
guide tree and derived also from LG+C20+F+�, showed
less LBA bias than the LG+C20+F+� mixture model
itself, although it did display some LBR bias. The
performance of PMSF2 fell between PMSF0 and PMSF1:

it showed a slight LBA bias as in PMSF0 and no LBR bias
as in PMSF1.

Impact of taxonomic sampling on performance.—For the 4-
taxon LBR generating tree with branch lengths a=0.4
and b=0.015 the proportions of the correctly estimated
trees are all less than 8% under PMSF0, PMSF1, MAX0,
and MAX1 (Fig. 4). Figure 7 shows that with increasing
taxon sampling, the estimation accuracies increase
rapidly. For the data (21,000 sites) simulated under the
8-taxon tree (see Fig. 2), PMSF1, PMSF0, MAX1, and
MAX0 estimated the correct tree 82%, 38%, 62%, and
20% of the time. For the 12-taxon tree generated data,
the percentages are 98%, 88%, 94%, and 56%. For the data
generated under the 16-taxon and 20-taxon trees (Fig. 2)
all estimated trees are 100% correct for all but PMSF0
which had an accuracy of 97% for the 16-taxon data
sets. The result shows that increasing taxon sampling
can effectively reduce the LBR bias for the PMSF and
MAX models.

In Figure 3 and Supplementary Figure S2 available on
Dryad the LG+F+� model is shown to have substantial
LBA bias for the four taxon simulation. It is therefore of
interest to know if increased taxon sampling will reduce
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FIGURE 7. Simulation for the LBR setting (fixed branch lengths
were a=0.4, b=0.015) for 4-taxon, 8-taxon, 12-taxon, 16-taxon, and
20-taxon trees with data generated under LG+C20+F+� and
estimated under PMSF0, PMSF1, MAX0, and MAX1 (see Fig. 2).

this bias for the LG model. Table 4 shows that as the
number of taxa increase the proportions of the estimated
LBA trees reduce gradually. However the proportion of
LBA trees is still at 14% for the data simulated under the
20-taxon tree.

All of the foregoing simulations show that PMSF0,
PMSF1 and PMSF2 are relatively insensitive to the LBA
bias in the ML estimation. They are even better than the
C20+F mixture when the data sets are simulated under a
larger number of amino acid frequency profiles (i.e., the
61 components under the C60+F mixture), even though
the PMSFs, in this case, were still derived from the data
fitted under the C20+F mixture. Compared with the
LG+C20+F+� mixture model, PMSF and MAX models
appear more prone to LBR bias. However, increasing
the number of taxa in the data sets beyond 16–20 taxa,
which is usually possible for empirical phylogenomic
data, can effectively reduce the LBR bias. Since PMSF0
and PMSF1 performed better than MAX0 and MAX1
in all simulations we will consider only PMSF in the
following studies.

Simulation under a mixture of the six structure-based
amino acid replacement models.—Under LBA-inducing
conditions, for the concatenated data simulated under
BUR_EXT, BUR_HEL, BUR_OTH, EXP_EXT, EXP_HEL,
and EXP_OTH, both the generating EX_EHO+F+�
model and the LG+F+� model displayed a small LBA
bias when the ratio of the long branch lengths to
short branch lengths is large. The LG+C20+F+� model
showed much less bias than the LG model and the
PMSF2 model was the least biased among the four
models (Supplementary Fig. S6 available on Dryad lower
panel). Indeed, except in one case where a=1.0 and
b=0.01, an LBA tree was estimated in one out of 100
simulations, PMSF achieved 100% correct estimations

in the other 9999 simulations under the 100 pairs
of the a and b settings. Therefore, these simulations
also demonstrate that the PMSF and C20+F mixture
models can effectively alleviate the LBA bias for the data
generated under several structure-based rate matrices.

Under the LBR-inducing conditions, the LG+F+�
model had no bias, EX_EHO+F+� had a very
slight bias, and LG+C20+F+� showed a greater
bias. LG+PMSF2+� had a substantial LBR bias
(Supplementary Fig. S6 available on Dryad upper panel).
The simulated data have only four taxa and 6000 sites.
Adding more taxa or increasing sequence length is
expected to reduce the LBR bias. For instance, the top left
corner in Figure S6 corresponding to branch lengths a=
1.0 and b=0.01 had the lowest estimation accuracy (25%)
for LG+PMSF2+� in the 4-taxon LBR simulation. When
simulating under EX_EHO under an 8-taxon tree (see
Fig. 2) the proportion of correctly estimated trees under
PMSF increases to 54% and it further reaches 83% when a
16-taxon tree was used for simulation. This suggests that
PMSF performance under these conditions substantially
improves with better taxonomic sampling. However, as
discussed in a later section (“Comparison with other
models”), simulations under the plain LG or EX_EHO
models have questionable relevance to the performance
of PMSF with real data; these models typically fit real
data worse than sufficiently complex site-specific profile
mixture models such as C20+F.

Empirical Data
The 300 HSSP test data sets.—The LG+F+�,
LG+C20+F+�, LG+PMSF2+� and LG+PMSF3+�
models were used to infer the ML trees from the
300 data sets. Using the Robinson–Foulds distance
(Robinson and Foulds 1981) to measure the topology
difference between the four models, Table 5 (and see
Supplementary Materials S2 available on Dryad for more
details) indicate the site-heterogeneous models (C20+F
mixture and PMSF) estimated different topologies from
the site-homogenous LG model in the majority of the
cases. Similar findings were reached when comparing
LG with the other site heterogeneous models (including
LG4M, LG4X and the structure models) (Le and Gascuel
2010; Le et al. 2012). All three site-heterogeneous models
estimated trees more similar to one-another than to the
tree estimated under the LG+F+� model. The C20+F
mixture model tends to estimate trees more similar to
PMSF3 than to PMSF2, indicating that the guide tree
has an impact on the estimation.

Comparing the log-likelihoods of the estimated trees
under the models, 277 data sets show significant
evidence for C20+F over LG based on a likelihood ratio
(LR) test, while the other 23 data sets do not yield
significant results. It should be noted that the LR test
is expected to be conservative under these conditions
(i.e., the true P-values are smaller than those yielded by
�2 with 20 degrees of freedom) because for the C20+F
model to be reduced to LG, 20 of the mixture weight
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TABLE 4. The proportions of estimated correct trees and LBA trees for simulated data with increased taxon sampling

LG+F+� LG+ C20+F+� PMSF2

Correct tree (%) LBA tree (%) Correct tree (%) LBA tree (%) Correct tree (%) LBA tree (%)

4 taxa 0 100 100 0 100 0
8 taxa 18 82 100 0 100 0
12 taxa 48 52 100 0 100 0
16 taxa 83 17 100 0 100 0
20 taxa 86 14 100 0 100 0

Note: One hundred alignments of 21,000 sites were generated respectively under LG+C20+F+� for LBA-inducing trees of 4, 8, 12, 16, and 20 taxa
with the long branch a=0.4 and short branch b=0.015.

TABLE 5. Topology estimation for the 300 HSSP test data sets

Number of times same Average RF distance
Models in comparison topology was estimated over 300 data sets

LG+F+� LG+C20+F+� 38 15.13
LG+F+� LG+PMSF2+� 51 11.36
LG+F+� LG+PMSF3+� 38 15.31
LG+C20+F+� LG+PMSF2+� 103 8.07
LG+C20+F+� LG+PMSF3+� 198 2.31
LG+PMSF2+� LG+PMSF3+� 114 7.87

parameters must be set to 0, which is on the boundary
of their parameter space (Self and Liang 1987). As a
result, some of the 23 data sets that were not rejected
using the �2 critical value, are likely truly significantly
better fit by the C20+F model. Interestingly, the mean
number of taxa and number of sites are 45.02 ± 22.87 and
244.09 ± 141.28 respectively in the 277 significant data
sets, while the corresponding statistics are 16.61 ± 5.98
and 282.17 ± 206.37 respectively for the 23 nonsignificant
ones. A t-test shows that the average number of taxa is
significantly higher (P<10−15) in the 277 data sets than
the other 23 data sets, while the average number of sites
is not significantly different (P=0.39). We suggest that
information about frequency heterogeneity across sites
increases as the number of taxa increases—more so than
as the number of sites increases. This likely explains why
the 277 data sets tended to show stronger evidence of a
better fit of C20+F versus LG than the remaining 23 data
sets.

Another measure of the relative performance of
the models is the Akaike information Criterion (AIC)
(Akaike 1974). Le and Gascuel (2010) found that the
EX_EHO model had per site AIC gains (i.e., smaller AIC)
over the LG model for almost all 300 HSSP data sets (see
Fig. 2 in Le and Gascuel, 2010). It is interesting to add the
LG+C20+F+� mixture model in this comparison. The
likelihood under the C20+F mixture is always greater
than EX_EHO, which is in turn almost always greater
than LG. In terms of the AIC, the C20+F mixture is
lower than LG and EX_EHO in 270 and 273 data sets,
respectively. We calculated, for each model, the average
per site AIC for the 300 data sets combined, using
Equation (6) in Le and Gascuel (2010). The per site AIC
improvement of EX_EHO versus LG is relatively small

at 0.20 while that improvement of C20+F versus LG is
much larger at 1.15 per site. This indicates the C20+F
mixture fit the data much better than both LG and
EX_EHO.

Likelihood ratio tests and AIC cannot directly be
used to compare the C20+F and PMSF models, as the
“parameters” of the latter model are not estimated by
ML. However, in comparing the log-likelihoods between
PMSF2 and PMSF3, we found that PMSF3 estimated
higher likelihoods in 219 data sets, PMSF2 did better in
70 data sets and both had the same likelihoods for 11
alignments. This suggests that using the C20+F guide
tree (as in PMSF3) rather than the LG guide tree (PMSF2)
may improve estimation under PMSF.

Altogether, the analyses of the 300 HSSP data suggest
that topologies estimated within the class of site-
heterogeneous models are more likely to be similar to
each other than to the topology estimated under the LG
model. Although it is largely unknown what the true
topologies are for these data sets, as pointed out in Le and
Gascuel (2010), these topology and likelihood differences
should be of interest to the phylogeneticists studying
these proteins.

Deep angiosperm phylogeny.—For the angiosperm
concatenated chloroplast-encoded protein data
set (Leebens-Mack et al. 2005), we conducted tree
topology searches under the three models: JTT+F+�,
JTT+C20+F+� mixture model, and JTT+PMSF2+�
(i.e., JTT+F+� tree as the guide tree and derived PMSF
profile under JTT+C20+F+�). As in Leebens-Mack
et al. (2005), the ML tree under JTT+F+� put Amborella
as the sister of a clade made up of all other flowering
plants, although the bootstrap support is only 49%
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TABLE 6. Bootstrap support values (%) for the correct Microsporidia+Fungi (M+F) split and incorrect Microsporidia+Archaea (M+A) split
for the Microsporidia data set

M+F split M+A split

UFboota STNboota UFboot STNboot CPU time for standard bootstrap

LG+F+� 2 2 98 98 610 h 46 min
LG+C20+F+� 63 60b 37 40b 17,175 h 38 minb

LG+PMSF2+� 77 82 23 18 2194 h 50 min
LG+PMSF3+� 100 100 0 0 2223 h 55 min

aUFboot is ultrafast bootstrap support; STNboot is standard nonparametric bootstrap support.
bFor running standard nonparametric bootstrapping under LG+C20+F+�, due to computer resource constraints, only 43 data replicates were
completed which took 7385.5 CPU h, which extrapolates to 17,175 h 38 min for standard 100 bootstrap replicates. The STNboot values are based
on the 43 bootstrap replicates.

(Supplementary Fig. S7 available on Dryad). In contrast,
the two ML trees estimated under the JTT+C20+F+�
and PMSF2 models recovered an Amborella plus water
lilies (Nuphar and Nymphaea) as a clade (The C20+F
UFboot = 91%, PMSF2 STNboot = 90%) sister to the
remaining angiosperms (the latter clade had the C20+F
UFboot = 100% and the PMSF2 STNboot = 100%)
(Supplementary Figs. S8 and S9 available on Dryad).
Finally, analyzing the data set under CAT+GTR+� also
grouped Amborella and the water lilies in a clade with
0.94 posterior probability (PP) with the “remaining
angiosperm” group gaining PP = 0.99 (Supplementary
Fig. S10 available on Dryad). Although the position of
Amborella appears to be still under active debate (Drew
et al. 2014; Wickett et al. 2014; Goremykin et al. 2015),
the site-heterogeneous models converge on Amborella +
water lilies forming a basal angiosperm clade based on
this data set.

The placement of Microsporidia in the tree of eukaryotes.—
Tree topology searches were conducted under the five
models: LG+F+�, LG+C20+F+�, LG+PMSF2+�,
LG+PMSF3+�, and CAT+GTR+�. As expected, the
LG+F+� model recovered an incorrect tree with the
LBA bias where Microsporidia is grouped with archaea
to the exclusion of other eukaryotes (STNboot =
98%, Supplementary Fig. S11 available on Dryad).
The LG+C20+F+� mixture model estimated a
topology where Microsporidia and Fungi form a
clade (Supplementary Fig. S12 available on Dryad). Tree
searching under the LG+PMSF3+� model recovered
the same topology (Supplementary Fig. S13 available
on Dryad). The bootstrap support under PMSF3 for
the E. cuniculi + fungi split was 100% using both
STNboot and UFboot. The optimal tree estimated with
LG+PMSF2+� (Supplementary Fig. S14 available on
Dryad) slightly differs from the tree estimated under
LG+PMSF3+� but the E. cuniculi + Fungi group was
also recovered, receiving 77% UFboot and 82% STNboot
support respectively. This demonstrates that even if an
incorrect LBA-biased topology is used as the guide tree
to derive PMSF, it is possible to estimate the correct
topology avoiding the LBA bias under this model. The
CAT+GTR+� model also recovered a tree with an E.

cuniculi + Fungi split (PP = 1.0) (Supplementary Fig. S15
available on Dryad).

Table 6 shows the bootstrap supports for the correct
Microsporidia + Fungi (M+F) split and the incorrect
Microsporidia + Archaea (M+A) split for the various
models. The data indicate that both PMSF2 and
PMSF3 have higher support for the correct M+F split
than the LG+C20+F+� mixture model, while the
LG+F+� model give very high support for the incorrect
M+A split. Table 6 also gives the CPU time used
for the 100 standard bootstraps under the LG+F+�,
LG+C20+F+�, and PMSF models. Runs using the two
PMSF models spent 3.3 and 3.6 times as much time
respectively as the LG model, whereas they were 7.7
and 8.6 times faster than the C20+F mixture model.
Since the STNboot analysis is extremely computationally
demanding under the C20+F mixture, the UFboot
approximation was used for the remaining empirical
data analyses.

The placement of nematodes and platyhelminths in
the metazoan tree.—For the nematode data, tree
searching under LG+F+� yielded the same topology
(Supplementary Fig. S16 available on Dryad) as the
WAG+� model in Lartillot et al. (2007), namely
arthropods formed a clade with deuterostomes (i.e.,
the so-called “Coelomata” topology) with nematodes
splitting off earlier (i.e., joining the long branch leading
to the outgroup). Analyses based on the LG+C20+F+�
mixture however successfully avoided the LBA bias
and supported the widely accepted Ecdysozoa clade
(nematodes + arthropods) (Supplementary Fig. S17
available on Dryad). We derived the PMSF2 and PMSF3
models under the LG+C20+F+� mixture based on
the incorrect LG tree and correct LG+C20+F+� tree
respectively. Tree searching using PMSF2 and PMSF3
both recovered the same correct topology with the
Ecdysozoa clade (Supplementary Figs. S18 and S19
available on Dryad). The STNboot support for this clade
is 65% in PMSF2 and 100% in PMSF3.

For the ML trees estimated under the various models
the split between the fungal outgroups and the in-group
taxa (nematodes, arthropods and deuterostomes) had
a bootstrap support of 100% for both STNboot and
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TABLE 7. Bootstrap support values (%) for the position of the
nematodes within Metazoa

nematodes + deuterostomes +
arthropods arthropods
(Ecdysozoa) (Coelomata)

UFboot STNboot UFboot STNboot

LG+F+� 21 18 79 82
LG+C20+F+� 76 NA 24 NA
LG+PMSF2+� 69 65 31 35
LG+PMSF3+� 100 100 0 0

NA = data not available (too computational demanding under the
model).

UFboot, but the support values within the three in-
groups were different between the models. Table 7 lists
the bootstrap support values for the correct Ecdysozoa
split (nematodes + arthropods) and incorrect Coelomata
split (deuterostomes + arthropods) under the various
models. PMSF3 shows the highest support for the
Ecdysozoa group, while LG+C20+F+� and PMSF2
have relatively lower support for this clade. The LG
model gives relatively high support for the incorrect
Coelomata clade.

For the platyhelminth data set, we conducted similar
analyses to get ML trees under LG+F+�, LG+C20+F+�,
PMSF2, and PMSF3. All analyses yielded the same
incorrect topology displaying the Coelomata clade, with
the long-branched platyhelminths clustering with the
outgroup (Supplementary Fig. S20 available on Dryad
for the ML tree under LG). Under the assumption
that the LG+C20+F+� model may not have a rich
enough set of classes to accurately model this data
set, we fit the 61 component LG+C60+F+� model
and searched for the ML tree. However, this yielded
the same incorrect Coelomata topology. Interestingly,
tree searching using PMSF derived from the foregoing
LG+C60+F+� mixture instead recovered a tree with
the correct Protostomia clade, albeit with weak STNboot
support at 55% (Supplementary Fig. S21 available on
Dryad).

Similar to the nematode data, the split between the
fungal outgroups and the in-group taxa (platyhelminth,
arthropods and deuterostomes) had 100% support for
both STNboot and UFboot under the various models, but
the supports within the three in-groups were different
among the models. Table 8 shows the bootstrap support
values for the Protostomia and Coelomata splits for the
six models used in the ML tree searches. This again
shows that only PMSF based on the LG+C60+F+�
mixture gives a higher support for the Protostomia split
than the Coelomata split and it is true even though
the guide tree used to obtain the PMSF profile has a
Coelomata split.

The placement of breviates and apusomonads in the tree
of eukaryotes.—We conducted ML tree searches for the
data under the LG+F+�, LG+C20+F+�, PMSF2, and
PMSF3 models. As in Brown et al. (2013) the LG+F+�

TABLE 8. Bootstrap support values (%) for the placement of
platyhelminths within Metazoa

platyhelminth + deuterostomes +
arthropods arthropods

(Protostomia) (Coelomata)

UFboot STNboot UFboot STNboot

LG+F+� 0 0 100 100
LG+C20+F+� 31 NA 69 NA
LG+PMSF2+� 45 55 55 45
LG+PMSF3+� 47 46 53 54
LG+C60+F+� 38 NA 62 NA
LG+PMSF.C60a +� 62 55 38 45

NA = data not available (too computational demanding under the
model).
aPMSF.C60: the frequency profile is derived under LG+C60+F+�
based on the LG+F+� tree.

TABLE 9. Bootstrap support values (%) for the placement of the
breviates within Obazoa

apusomonads + apusomonads +
opisthokonts breviates

UFboot STNboot UFboot STNboot

LG+F+� 0 2 100 98
LG+C20+F+� 95 NA 5 NA
LG+PMSF2+� 85 78 15 22
LG+PMSF3+� 97 92 3 8

model estimated an Obazoa clade with the opisthokonts
at its base and breviates and apusomonads are sister
to each other forming a ((A,B),O) topology. All the
other models (Supplementary Figs. S22–S24 available
on Dryad) recovered an Obazoa clade with the correct
((A,O),B) topology. The STNboot support for the (A,O)
split is 78% and 92% for PMSF2 and PMSF3 respectively
and the support for the Obazoa clade ((A,O),B) is 99%
and 100% respectively for the two models.

Table 9 shows the bootstrap supports for the two
types of configuration of the Obazoa clade for the above
models used in the ML tree searches. The results again
indicate PMSFs gives relatively higher support for the
correct ((A,O),B) topology than the incorrect ((A,B),O).
In particular for PMSF2 which were derived from the
ML tree with a ((A,B),O) split, the (A,O),B) topology was
estimated under the model.

DISCUSSION

Comparisons of PMSF with Simpler Mixture Models
Our new PMSF method performs as well, if not

better, than C20+F and C60+F empirical mixture models
in estimating phylogenies in the presence of site-
heterogeneity both in simulations and in empirical
settings, yet they are much more computationally
efficient. However, several other empirical mixture
models including CF4 (Wang et al. 2008), LG4X
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(Le et al. 2012), and the structure-based EX_EHO (Le
and Gascuel 2010) contain fewer mixture components
and therefore are also quite computationally efficient
compared with the C20+F and C60+F mixtures. It
of interest, therefore, to know whether they perform
as well as the more complex mixtures and PMSF
in tree estimation in empirical settings. We checked
whether these simpler mixture models are able to
overcome the LBA biases in the empirical phylogenomic
data sets. In the Supplementary Materials available
on Dryad (page 27), we show the relevant splits and
their UFboot support values for the ML trees estimated
under LG+CF4+F+�, LG4X+�, and EX_EHO+F+� for
the five empirical data sets. For the angiosperm data,
these three models estimated an Amborella + water
lilies clade with 64%, 62%, and 64% UFboot support
respectively. The same split was also estimated under the
C20+F, PMSF and CAT-GTR models (Supplementary
Figs. S8–S10 available on Dryad) but with higher support
values (all >91%). For the remaining four empirical
data sets, the CF4+F and EX_EHO models estimated
topologies displaying the “long branch attraction”
groupings described above (with UFboot support >66%
in all cases). The LG4X model also estimated the “LBA”
split for the Microsporidia, the platyhelminth and the
Obazoa data sets with high support (UFboot >92% in
all cases). On the other hand, for the nematode data set,
the LG4X estimated the correct Ecdysozoa clade with
modest support (UFboot = 73). Overall, however, the
simpler mixture models like EX_EHO, LG4X, and CF4+F
are less effective at overcoming the LBA bias in real
phylogenomic data sets.

Fit of Models to Real data and Realism in Simulations
In the above analysis we showed that the average

per site AIC gain relative to the LG model for the
combined 300 HSSP protein data sets are much larger
under the C20+F mixture than EX_EHO. This is also
true for the five phylogenomic data sets considered
here (Supplementary Table S1 available on Dryad).
These results indicate that the C20+F mixture model
fits empirical data—either single protein or multi-
protein alignments—better than the LG or EX_EHO
models in almost all cases. Thus the C20+F mixture
model better captures the site-specific nature of the
substitution process than the other two models. This
suggests that the performance of the various models
considered here in simulations under site-specific amino
acid frequency distributions like the C20+F and C60+F
mixtures (Figs. 3–7) are more relevant to the performance
of these models on real data than the simulations under
the LG or the EX_EHO models (e.g., Supplementary
Figs. S3, S5, and S6 available on Dryad).

Regardless, the fact that PMSF outperform LG,
EX_EHO and even C20+F (for the C60+F-simulated
data) for the LBA simulation cases indicate that this
new model can be effective overcoming the long branch
attraction artefact, one of the most difficult biases in

phylogenetic inference (Philippe et al. 2011). PMSF does
display a LBR bias in the 4-taxon LBR-simulation cases.
However our results indicate that the LBR bias can be
remedied through increasing taxon sampling and longer
sequences.

The Issue of Model Selection under PMSF
Direct comparison of likelihoods from PMSF with

other models is complicated by the nature of fitting
under PMSF. Traditional approaches to model selection
like AIC, BIC, or LR tests require counts of the number of
parameters estimated in the models under consideration
and assume ML estimation was used in fitting. The
number of estimated parameters for PMSF is not clearly
defined. A naïve approach is to count 19 parameters
at each site for the estimated amino acid frequencies
in the PMSF at that site. This would be appropriate if
frequencies were estimated by ML separately at each site.
However, PMSF, which uses empirical Bayes estimates of
frequencies, is much more restrictive in its estimation. To
quantify this, consider the relative volume of the space
of all frequencies at a site, to the volume of the space
of frequencies constructed from mixtures of C20+F
frequencies, which contains the space of allowable PMSF
frequency vectors at any site. The qhull software of
Barber et al. (1996) can be used to calculate such volumes
and gives that the volume of the full space of frequencies
is roughly 2×1020 times as large as that of the space of
mixtures of C20+F frequencies.

Another illustration of the pitfalls of counting
frequencies as parameters in PMSF can be seen by
considering the use of LR tests for model selection.
For standard model comparisons involving nested
models, under the null hypothesis that simpler model
is correct, the LR statistic (twice the log-likelihood
difference between a more complex model and a
simpler model) is expected to be �2 distributed with
degrees of freedom equal to the differences in the
number of parameters between the models. So in
this context, if PMSF were approximately the same
as ML estimation of 19 frequencies per site, then
the LR statistic for a PMSF/single-frequency model
(e.g., JTT+F+�) test, if the latter simpler model were
correct, should be �2 distributed with 19× (No. of
sites − 1). To test this, we generated a parametric
bootstrap distribution of the LR statistics between
a PMSF model (fit using JTT+C20+F+�) and the
JTT+F+� model applied to 100 sets of the simulated
angiosperm data under the JTT+F+� model and the
ML tree (see the Methods in Supplementary Fig. S25
available on Dryad). Supplementary Figure S25 available
on Dryad shows the bootstrap distribution. The critical
value for a LR test with an �-level of 0.01 from this
distribution is 2342 and the observed LR statistic for
this data set is 26,150. Since the observed LR statistic
is much larger than both the mean and 99th percentile
of the bootstrap distribution (being 1400 and 2342
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respectively), the first conclusion that can be drawn is
that PMSF has significantly improved model fit relative
to JTT+F+�. The second conclusion is that standard
model comparison based on differences in the number of
parameters are inappropriate. Whereas the appropriate
critical value coming from the bootstrap distribution is
2342, the 99th percentile of a �2 distribution with 12,548
× 19 = 238,412 degrees of freedom is 240,021, which is
more than 100 times greater than the true critical value.
Thus the increased “flexibility” of PMSF relative to the
single frequency model is far lower than 19 additional
free parameters per site.

It is clear that the simple application of an LR
test or other model selection methods assuming 19
free parameters per site cannot be validly used to
compare PMSF to single frequency models. Although
the parametric bootstrapping approach described here is
a reasonable alternative, it is computationally intensive
and development of new model selection criteria
appropriate for this setting will be an important avenue
for future investigations.

Comparing PMSF Models Under Different Guide Trees
It is usually the case that likelihoods for models of the

same dimension are comparable and that the model with
the largest likelihood is expected, with large numbers
of observations, to be the correct one. Comparisons can
become problematic when the numbers of parameters fit
under one model are greater than under another model
or, stated more generally, if there is greater flexibility in
estimating parameters under one model than another.
Since PMSF profiles constructed from two different
guide trees have the same flexibility of parameter
estimation, the expectation is that their likelihoods will
be comparable. Thus the tree giving the largest log-
likelihood is the one to be preferred. The reason for
preferring the tree with the largest log-likelihood stems
from the fundamental reason that tree estimation is
statistically consistent with a fixed frequency vector: the
expected log-likelihood for the true tree and frequencies,
will always be larger than the expected log-likelihood for
any other tree and frequencies. For frequencies generated
with a finite number of classes, this implies that for any
fixed class, the sum of site log-likelihoods for the correct
tree and correct frequency profile for that class will
eventually be larger than the sum of site log-likelihoods
for any particular alternative tree and profile. Since this
result applies for each class and since the overall log-
likelihood is the sum of the site log-likelihoods over all
classes, it follows that the log likelihood for the true
tree and correct frequency profiles will eventually be
larger than for any other tree. Since correct frequency
profiles are not exactly known, PMSF estimates them
and, for the correct tree, provides an approximation to
the log-likelihood for the true tree and correct frequency
profiles, which is the reason for preferring trees giving
largest log likelihoods. Therefore, if different PMSF
models are derived from the same mixture model with

different guide trees or from different mixture models
of the same dimension, the log-likelihoods of a given
topology and the accompanying PMSF model can be
directly compared. This can be used to select the best
topology in the case that multiple alternative optimal
topologies have been recovered based on tree-searching
using different PMSF models. On the other hand, log-
likelihoods of trees estimated under PMSF models
derived from mixture models of different dimensions
(e.g., PMSFs from LG+C20+F+� vs. LG+C60+F+�)
cannot be straightforwardly compared, nor can standard
model selection frameworks be applied. This is because,
as empirical Bayes posterior mean estimates, the PMSFs
are fitted to the individual sites. Therefore, the more
complex the mixture models upon which they are based,
the more site classes and class weights are being used to
derive these posterior means and the greater the range of
frequencies that can be fit. So the more complex mixtures
can be expected to give frequencies that are closer to the
maximum likelihood frequencies at the site.

Developing Better PMSF Profiles
Although for the five empirical phylogenomic data

sets the PMSF profiles derived from the incorrect guide
trees (i.e., the LG or JTT trees in the examples) are still
able to estimate the correct topologies, it is ideal to
use more accurate trees, whenever available, as guide
trees to obtain the PMSF profiles. This will increase the
chance of estimating accurate topologies, as the LBA
and LBR simulations show, and lend higher bootstrap
supports for the correct splits (Tables 6–9). For new
phylogenomic data without well-accepted phylogenies,
one may first estimate a ML tree under LG+F+�, which
is computationally fast, and use this tree as a guide tree
to fit a LG+C20+F+� or (even better LG+C60+F+�
model) to obtain the PMSF profile. Then tree searching
can be completed under LG+PMSF+� to get an ML tree,
which is relatively faster than estimating a tree under
the full LG+C20+F+� mixture. Alternatively one might
iteratively update the guide tree. As above, this approach
would use PMSF derived from the LG+F+� guide tree
to obtain a first LG+PMSF+� tree. That LG+PMSF+�
tree would then be used as a new guide tree, leading
to new PMSF and hence a new LG+PMSF+� tree. The
process could be repeated a fixed number of times or
until no further topological changes occur. As the guide
tree can be expected to get more accurate with each step,
the PMSF profile can be expected to get closer to the true
profile, which should allow more accurate phylogenies
to be estimated.

In the PMSF approach we investigated the use of
posterior mean and posterior maximum frequencies,
settling upon the former as the better choice. While
it seems clear that using observed site frequency
profiles in place of the posterior mean frequencies will
give rise to undesirable properties due to sparseness
concerns, it is possible that approaches that smooth
frequency estimates in some way, through for instance
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the addition of pseudocounts may give reasonable
alternative frequency profiles for the general approach
here. Such modifications likely would still require
relatively large numbers of taxa whereas posterior means
smooth the frequencies to a greater degree.

In summary, we proposed and implemented PMSF
models to approximate the empirical profile mixture
models. A PMSF is a conditional mean frequency vector
estimated for each site based on a fitted mixture model
and a guide tree. These models provide substantial
computational savings compared with mixture models.
The computational efficiency of PMSF makes them
tractable to analyze large phylogenomic data sets that
are continually growing in numbers of genes/proteins
and taxa sampled. They also allow for standard
nonparametric bootstrap analysis, as shown in all five
empirical case studies. Our simulations and empirical
data analyses demonstrate that PMSF can effectively
ameliorate LBA artefacts and, in a few cases, they provide
more accurate topological estimates than the mixture
models themselves.
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APPENDIX: THE RELATIVE COMPUTATIONAL COST OF

LIKELIHOOD EVALUATION

For PMSF, and a fixed rate and site, the likelihood
contribution, L is obtained through a sequence of
updates. For some fixed rooting of the tree, let Li(p),
denote the conditional probability of the data at
descendent terminal nodes, given amino acid i at
parent node p. The partial likelihood Li(p) is obtained
a product of partial likelihoods, Li(p,e1)Li(p,e2) over two
descendent edges, where Li(p,e) gives the conditional
probability of descendent data from node p and along

edge e. For a sequence of internal nodes in an arbitrarily
rooted tree, partial likelihoods, or more precisely,
conditional probabilities, Li(p,e) of descendent data,
given amino acid i at parent nodes, p, are successively
updated along their descendent branches through

Li(p,e) =
c∑

k=1

U−1
ik exp(�kt)Uks(d), external edge

(A.1)

Li(p,e) =
c∑

j=1

c∑
k=1

U−1
ik exp(�kt)UkjLj(d), internal edge

(A.2)

where c is the number of character states (20 for amino
acids). Here U, U−1 and �k come from the eigen-
decompositions of the rate matrices and t denotes
the edge-length. In the external edge calculation, s(d)
denotes the amino acid at the terminal node and in
the internal edge calculation Lj(d) denotes the partial
likelihood given amino acid j at the descendent node
d of the edge.

The update (A.2) can be obtained efficiently through
a three-step update:

Ck =
c∑

j=1

UkjLj(d), k =1,...,c, (A.3)

Vk = exp[�kt]Ck, k =1,...,c, (A.4)

Li(p,e) =
c∑

k=1

U−1
ik Vk, i=1,...,c. (A.5)

Finally, the overall likelihood is obtained as L=∑
i�iLi(r), where Li(r) is the partial likelihood at the root.
Let A, M and E denote the CPU costs of addition,

multiplication and calculation of exp(x). Counting
operations over all values of k, the cost of (A.3) is
c(cM+(c−1)A)=c2M+c(c−1)A and the cost of (A.4) is
2cM+cE. The cost of (A.5), which needs to be repeated
over all values of i, is the same as (A.3). Thus the total
cost for an internal edge is 2c(c+1)M+2c(c−1)A+cE.
Efficient calculation of the external edge update (A.1)
requires (A.4)-(A.5) but Ck =Uks(d) and so (A.3) can be
ignored, giving cost c(c+2)M+c(c−1)A+cE. At each
internal node, the products Li(p)=Li(p,e1)Li(p,e2) need
to be calculated each with a cost of cM. Finally, the sum,
L=∑i�iLi(r) has a cost of (c−1)A+cM. With m taxa
there are m−3 internal edges, m external edges and m−2
internal nodes, so the total cost is

C(PMSF) = (2c(c+1)M+2c(c−1)A+cE)(m−3)

+(c(c+2)M+c(c−1)A+cE)m+cM(m−2)

+(c−1)A+cM (A.6)
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For LG+F+�, a computational savings is possible
because for each edge and k, exp[�kt] can be pre-
computed; by contrast PMSF repeats these calculations
at each site. Thus

C(LG)=C(PMSF)−(2m−3)(cM+cE) (A.7)

A k-category mixture needs to repeat the likelihood
evaluations for each component giving cost kC(LG).

For the gcc C compiler, we approximated relative
values of M, A and E using repeated multiplications,
additions and exponentiations as E=22A and A=M.
Substituting these values into (A.6) and (A.7) gives
C(PMSF)/C(LG) decreasing from approximately 1.5 with
4 taxa to 1.4 as T gets large. We note that there are
ways of reducing the cost of updating for LG+F+�
by precomputing substitution matrices. However, the
calculations indicated here are more efficient overall
because updates can be re-used when doing derivative
calculations for edge lengths.
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