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Abstract

Whole-genome or multiple gene phylogenetic analysis is of interest since single gene analysis often results in poorly resolved
trees. Here, the use of spectral techniques for analyzing multigene data sets is explored. The protein sequences are treated
as categorical time series, and a measure of similarity between a pair of sequences, the spectral covariance, is based on the
common periodicity between these two sequences. Unlike the other methods, the spectral covariance method focuses on
the relationship between the sites of genetic sequences. By properly scaling the dissimilarity measures derived from different
genes between a pair of species, we can use the mean of these scaled dissimilaritymeasures as a summary statistic to measure
the taxonomic distances across multiple genes.

The methods are applied to three different data sets, one noncontroversial and two with some dispute over the correct
placement of the taxa in the tree. Trees are constructed using two distance-basedmethods, BIONJ and FITCH. A variation of
block bootstrap samplingmethod is used for inference.The methods are able to recover all major clades in the corresponding
reference trees with moderate to high bootstrap support.

Through simulations, we show that the covariance-basedmethods effectively capture phylogenetic signal evenwhen struc-
tural information is not fully retained. Comparisons of simulation resultswith the bootstrap permutation results indicate that
the covariance-based methods are fairly robust under perturbations in sequence similarity but more sensitive to perturba-
tions in structural similarity.
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Introduction
Maximum likelihood (ML)-based methods of tree estima-
tion assume that sequence sites evolve independently as
a Markov process, based on a prespecified evolutionary
model, which allows the computation of the transition
probabilities at a given site (Felsenstein 2003). It is generally
accepted that there is a dependence among the sites
(Philippe, Delsuc, et al. 2005). A novel approach to address
the dependence among sites in phylogenetic analysis
was considered by Collins et al. (2006), where a spectral
envelope-based covariance method was developed to
estimate trees. The spectral envelope was first introduced
by Stoffer et al. (1993) as a method of analyzing categorical
time series in the frequency domain. The spectral envelope
provides an automated method of scaling qualitative time
series data to emphasize the strongest periodic signal in a
sequence. Since high peaks in the sample spectral density
correspond to periodic structure in a time series, choosing
scalings which maximize the spectrum should highlight
any periodic features present in the data. Thus, scalings are
chosen to maximize the variance at each frequency relative
to the overall variance of the data. Collins et al. (2006)
extended these analyses to amino acid sequences and
found that the peaks in the spectral envelope of protein
sequences correspond to the folding patterns of the sec-
ondary structures of a protein. The spectral covariance used
by Collins et al. (2006) as a measure of sequence similarity
is a nonstandardized adaptation of the spectral envelope

approach to coherency presented in Stoffer et al. (2000).
Collins et al. (2006) compared their results with those ob-
tained using standard likelihoodmethods and found that it
yielded similar tree estimates to theML approach when the
method was applied to a single protein. This was a remark-
able result as the two techniques are based on completely
different criteria. Although the ML method of tree estima-
tion relies heavily on the assumed evolutionary model, the
spectral covariance method of sequence comparison does
not assume any particular evolutionarymodel but instead is
a distance method based on spectral analysis. In this aspect,
the ML method can be thought of as parametric, whereas
the spectral covariance-based method can be viewed as
nonparametric. Unlike the ML method which assumes
site independence, the spectral covariance takes into ac-
count correlations among sequence sites. Since prominent
peaks in the spectral covariance correspond to common
periodicities in the individual sequences, the spectral covari-
ance, although sequence based, is a measure of structural
similarity (Collins et al. 2006).

In this paper, we extend these analyses to multigene
data sets and explore two different methods for com-
bining information from multiple genes to obtain tree
estimates. Note that the spectral methods applied
to phylogenetic data in this paper differ from those
introduced by Hendy and Penny (1993). The spectrum
defined in Hendy and Penny is a list of counts of possible
bipartitions over each site, representing the support for
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each split in the data, whereas here, the spectrum is the
fast Fourier transform of a time series representation of the
individual amino acid sequences. Whole-genome or mul-
tiple gene analysis is of interest since single gene analysis
often results in poorly resolved trees. Indeed, the small num-
ber of sites in a single gene tends to lead to a relatively high
level of variation in the estimation of trees (Rokas et al. 2003;
Philippe, Delsuc, et al. 2005). The question of how to com-
bine the information present in individual genes has been
the subject of extensive study and debate from which there
have emerged several approaches to the analysis of multi-
genedata sets (Bull et al. 1993; Bininda-Emonds 2004; Gatesy
et al. 2004; Philippe, Delsuc, et al. 2005; Burleigh et al. 2006;
de Queiroz and Gatesy 2007). The most widely used ap-
proach is to concatenate the alignments of individual genes
and then apply standard likelihood or distance-basedmeth-
ods on the concatenated sequences to derive a single repre-
sentative topology for multiple genes. Another approach is
to analyze the genes individually and then obtain a single
tree estimate by consensus (Baum 1992; de Queiroz 1993;
Miyamoto and Fitch 1995). Many have suggested that genes
should be combined conditional on their sharing similar
evolutionaryhistories. To achieve this, a test for congruence
is performed, and only those genes deemed to have com-
mon evolutionary histories are combined using concatena-
tion or consensusmethods (Bull et al. 1993; Farris et al. 1995;
Zelwer and Daubin 2004; Lecointre 2005; Leigh et al. 2008).
The concatenation approach has the advantage of using
all available sequence information and can sometimes re-
veal relationships between taxa, which are hidden in a sep-
arate analysis (de Queiroz and Gatesy 2007). Furthermore,
concatenation is supposed to reduce the stochastic error
(Jeffroy et al. 2006). However, the concatenation approach
implicitly assumes that all genes share a common evolu-
tionary history, and it may return incorrect estimates of
the underlying species tree when this assumption is vio-
lated. Different genes may evolve under different models;
hence, concatenation may also lead to model misspecifica-
tion (Philippe, Delsuc, et al. 2005; Jeffroy et al. 2006).

Since applying the spectral covariance on a concatena-
tion does assume a similar dependence structure among
genes, which may not necessarily be true, performing a
separate spectral analysis on individual genes and then com-
bining them seems more sensible. In our approach, spec-
tral covariance-based dissimilarity matrices are computed
for the individual genes and then combined toobtain a sum-
mary measure of the dissimilarity matrix. The goal of the
combination is to find a single dissimilarity matrix, which
best summarizes the information present in multiple genes.
Two different scaling methods are proposed in this paper
to scale dissimilarity matrices, so that the mean of these
scaled dissimilarities can be used as a summary measure
of the dissimilarity for each pair of taxa. In these meth-
ods, each dissimilarity matrix from a gene is given a single
scale coefficient. This gene-specific scale coefficient reflects
a gene’s specific evolutionary rate and makes the branch
lengths computed from the scaled dissimilarity matrices
comparable.

Materials and Methods
The Spectral Covariance
The spectral envelope of a categorical times series and
its application to problems in molecular biology was first
introduced by Stoffer et al. (1993). The spectral covariance,
introduced by Collins et al. (2006), is a spectral envelope-
based measure of similarity between two sequences. It is
a nonstandardized adaptation of the spectral envelope ap-
proach to coherency presented in Stoffer et al. (2000). The
spectral covariance is the smoothed Fourier transform of
the cross-spectra between two sequences. Ahighcovariance
at a given frequency signifies a common periodicity between
two sequences at that frequency.

A DNA or amino acid sequence can be treated as a cat-
egorical time series and can be transformed into a numeri-
cal time series by assigning a numerical value to each letter
in the sequence. Let Xt , t = 0,±1,±2, . . ., be a categori-
cal time series with finite state space C = {c1, c2, . . . , ck}.
For β = (β1,β2, . . . , βk )′ ∈ R

k , denote Xt (β) as the
real-valued time series corresponding to the scaling that as-
signs cj the value βj . The categorical time series Xt can be
expressed as a multivariate time series Yt , where Yt = ej
whenever Xt = cj and ej is an index vector with one in
the j th column and zeros elsewhere. The real-valued time
series Xt (β) is related to the multivariate time series Yt by
Xt (β) = Ytβ. The periodicity of this time series will de-
pend on the choice for β. The spectral covariance method
chooses scalings, which maximize the squared covariance
between two sequences at each frequency. Following the
same notation, denote the multivariate time series of cat-
egorical time sequence X1t as Y1t and that of categori-
cal time sequence X2t as Y2t . Scalings α(ω) and β(ω) at
frequency ω are chosen to maximize the squared spectral
covariance

Cov212(ω) = sup
α,β
|α′(ω)f12(ω)β(ω)|2, (1)

where f12 is the cross-spectral density between Y1t and
Y2t , and α(ω) and β(ω) are subject to the condition
α
′
(ω)α(ω)=1 and β

′
(ω)β(ω)=1. This normalization is

necessary to ensure that the covariance does not infinitely
increase. The cross-spectral density is the smoothed cross-
periodogram between two multivariate time series and is
defined by

f12(ω) =
1

2π

∞∑
k=−∞

R12(k )e
−iωk ,

where R12(k ) = Cov(Y1t , Y2(t+k )) is the cross-covariance
of {Y1t , Y2t} (Priestly 1981). Peaks in the cross-spectral den-
sity of two univariate time series represent periodicities
common to them. Since the value of the squared spectral
covariance at each ω depends on the choice of scalings, the
scalingsα and β are chosen such that the squared spectral
covariance at each frequencyω attains the maximumpossi-
ble value. Note that the squared spectral covariance in equa-
tion (1) can be rewritten as
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Cov212(ω) = sup
α,β

{[
α
′
(ω)f re12(ω)β(ω)

]2
+
[
α
′
(ω)f im12 (ω)β(ω)t

]2}
, (2)

where f re12 and f
im
12 are the real and imaginary parts of f12.

In this paper, we focus on two methods of computing
spectral covariance scalings by imposing two different con-
straints on α and β, namely, the common scaling method
and the taxa-specific scalingmethod. In the common scaling
method, each pair of taxa are assumed to have a common
scaling. That is, the scalings for “taxon1,” α and “taxon2,”
β are assumed to be the same when they are compared
with each other. Since amino acid sequences share the com-
mon alphabets and thus have the same state space, it is rea-
sonable to apply the same scalings to both sequences to
enhance the interpretability and reduce the variance of the
results (Collins et al. 2006). Although in the common scal-
ing method, the set of scalings for any given sequence de-
pends upon the sequence with which it is being compared,
the taxa-specific scaling assumes each taxonhas onlyone set
of scalings. That is, taxon1 will have the same set of scalings
regardless of whether it is being compared with taxon2 or
“taxon3.” The taxa-specific scaling covariances reflect the re-
lationshipbetween pairs of taxa relative to all the other taxa
in the tree. For the data analyzed in this paper, the common
scaling covariance and the taxa-specific covariancemethods
yield very similar results.

Note that although we work with aligned sequences in
this paper, the spectral covariance method does not re-
quire all sequences be aligned. Sequences may be made the
same length by cutting the longer sequence to the size of
the shorter. Another option might be to use pairwise align-
ments rather than multiple alignments.

The Common Scaling Spectral Covariance
It can be shown that when state spaces are the same and
the spectral density matrix is symmetric, the maximum co-
variance is achieved when scalings α = β (Stoffer et al.
2000). By applying a common scaling to the two sequences
being compared, we reduce the number of parameters in
the model, thereby reducing the complexity of the method
and increasing the precision of our estimates. For simplicity,
ω is considered fixed and dropped from the notation.With
X1t , X2t , Y1t , and Y2t defined as above, the squared spectral
covariance in equation (2) is now

Cov212 = sup
β

|β′ f12β|2, (3)

subject to β
′
β=1, where f12 is the cross-spectral density

between Y1t and Y2t . Equation (3) can be rewritten as

Cov212 = sup
β
′
β=1

([
β
′
f re12β
]2
+
[
β
′
f im12 β

]2)
. (4)

Since f re12 and f im12 are not usually symmetric, to make them
symmetric, we define matrices

A re =
[
f re12 + f re

′
12

]
/2,

A im =
[
f im12 + f im

′
12

]
/2.

Equation (4) then becomes

Cov212 = sup
β′β=1

([β
′
A reβ]2 + [β

′
A imβ]2). (5)

The algorithm to compute the common scaling β is given
below:

1. Initialization: set β to be one of the following:

β1 = ε1(A
re′A re),

β2 = ε1(A
im′A im),

whichever produces the larger initial estimate of the
spectral covariance. ε1 denotes the eigenvector corre-
sponding to the largest eigenvalue of the matrix in the
brackets. The initial squared covariance is then

Cov212 = (β
′
0A

reβ0)
2 + (β

′
0A

imβ0)
2.

2. Iteratively calculate scalings using

βj = ε1(A
reβj−1β

′
j−1A

re + A imβj−1β
′
j−1A

im) (6)

until convergence. Convergence criteria is set as ||βj −
βj−1||2 < 0.001.

Taxa-Specif ic Scaling Spectral Covariance
For the common scaling spectral covariance, the scalings for
any given taxa are dependent upon the taxa with which it is
being compared. For example, under the common scaling
spectral covariance, the honeybee may be assigned one set
of scalings when it is compared with the locust and a dif-
ferent set of scalings when it is compared with the nema-
tode. Another approach to assigning scalings to taxa is to
hold the scalings corresponding to each taxa in a given data
set constant across all pairwise comparisons. To compute
the taxa-specific scaling spectral covariance, the following
criterion is used. Following the notation above, for K taxa,
denote the multivariate series of K sequences X1t , . . . , XKt
as Y1t , . . . , YKt . The squared spectral covariance is now∑

i<j

Cov2ij = sup
βi ,...,βK

∑
i<j

|β′i fijβj |2, (7)

subject to β′iβi = 1 for i = 1, . . . , K , where fij is the
cross-spectral density between Yit and Yjt .

To find βi ’s which maximize equation (7), begin by ini-
tializingβ0i , (i = 1, . . . , K ) as the spectral envelope scaling
of the i th sequence. Then the algorithm is as follows:

For i = 1, 2, . . . , K , iteratively calculate scalings using
formula

βi = ε1
∑
j �=i
[( f reij βjβ

′
j f

re′
ij ) + ( f

im
ij βjβ

′
j f
im′
ij )],

where ε1 is the eigenvector corresponding to the largest
eigenvalue of the given matrix. Convergence criterion is∑K

i=1(||βri − βr−1i ||2) < 0.001 ∗ K .
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Dissimilarity Matrix Based on the Spectral Covariance
To build a spectral covariance-based phylogenetic tree, the
spectral covariance measure must be transformed into a
dissimilaritymeasure. The first step is to compute the spec-
tral covariance at each frequency for each pair of sequences.
The sum of the spectral covariance values above a thresh-
old, which is used for reducing noise, is then taken to ob-
tain a single numeric measure of similarity between the
two sequences, hereafter referred to as the total covariance.
The total covariance between the i th and j th sequences,
denoted as sim(xi , xj ), is then converted into a dissimilar-
ity measure between the i th and j th sequences using the
following definition:

diss(xi , xj ) = 1 − sim(xi , xj )

max
i �=j
(sim(xi , xj ))

,

for i , j = 1, . . . , n , where n is the number of sequences.
The threshold is based on the empirical distribution

of 1,000 bootstrap samples. The samples are obtained as
follows: Two sequences are randomly selected from within
the data set, and characters are randomly selected with re-
placement from these two sequences to obtain two sample
sequences with the same length as the original pair. This is
repeated until 1,000 sample covariances are obtained from
1,000 sequence pairs. The mean of the 95th quantiles of the
sample covariances at each frequency is then taken to be the
threshold. Applying the threshold should remove the ran-
domnoise in the spectral covariance and thus ensure strong
signals for similarity between sequences are taken into ac-
count by the total covariance statistic.

The dissimilaritymatrices for all genes are then combined
by the methods described below to generate the average
dissimilarity matrix.

Combining Dissimilarity Measures across Genes
One simple way to combine dissimilarity measures across
genes would be to take an average of the dissimilarity ma-
trices. However, the dissimilaritymatrices for different genes
are not necessarily on the same scale. This is generally true
for any distance-based method. Therefore, rather than tak-
ing themean directly, aweighted average is usedwhere each
matrix is weighted by a scale coefficient. The mean of the
scaled dissimilarity matrices is then used as the combined
dissimilarity matrix for the phylogenetic analysis. We next
present two criteria for computing scale coefficients, which
are generally useful for combining informationacross genes,
namely the minimum variance (MinVar) and the minimum
squared coefficientof variation (MinCV). Beven et al. (2005)
use a weighted least squares approach to estimate the evo-
lutionary rates of individual proteins and thereby estimate
a representative distance for each taxa pair from multiple
genes. In theirmethod, estimated distances areweighted ac-
cording to their level of uncertainty. The weights are based
on a given substitutionmodel (Bulmer 1991). In theMinVar
andMinCVmethods presented below, scales are chosen to
minimize the variance in the pairwise distances across genes,
and then, a weighted average across genes is taken as the

representative distance for each pair of taxa. No evolution-
ary model is assumed in the computation of the weights.

The MinVar Scale Coefficients
Fixing the scale coefficient for one of the matrices as one,
the scale coefficients for the other matrices are obtained by
minimizing the sum of the variances of the pairwise dissim-
ilarities across genes. For a data set with k genes and n taxa,
the dissimilarity matrices for the k genes are combined as
follows:

1. For each gene, organize the dissimilarity measures for
all pairs of taxa as a p vector, where p =

(
n
2

)
for n taxa.

We combine the dissimilarities from all k genes into a
single matrix

D =

⎛
⎜⎜⎜⎝

d1,1 d1,2 . . . d1,k
d2,1 d2,2 . . . d2,k
. . . . . . . . . . . .
. . . . . . . . . . . .
dp ,1 dp ,2 . . . dp ,k

⎞
⎟⎟⎟⎠,

where each column corresponds to all the dissimi-
larities from a specific gene. For example, di ,j is the
dissimilarity of the i th pair for the j th gene, i =
1, . . . , p , j = 1, . . . , k .

2. Let c = (c1, c2, . . . , ck ) be the scale coefficients for k
genes. Fix c1 = 1. The scaled dissimilarities are then

Ds = D×diag(c)=

⎛
⎜⎜⎜⎝

c1d1,1 c2d1,2 . . . ck d1,k
c1d2,1 c2d2,2 . . . ck d2,k
. . . . . . . . . . . .
. . . . . . . . . . . .
c1dp ,1 c2dp ,2 . . . ck dp ,k

⎞
⎟⎟⎟⎠.

3. The optimal scalings c = (c1, c2, . . . , ck ) are those that
minimize the sum of the variances of each pairwise dis-
similarity across the k genes:

V =

p∑
i=1

Vi =

p∑
i=1

⎡
⎣ 1

k

k∑
j=1

(cj di ,j )
2

−
⎛
⎝ 1

k

k∑
j=1

cj di ,j

⎞
⎠

2⎤
⎦. (8)

This minimization problem can be solved analytically.
The analytical solution is the solution to the linear sys-
tem of equations ∂V

∂cm
= 0,m = 2, . . . , k , where

∂V

∂cm
∝ 2cm

(
p∑

i=1

d 2
i ,m

)

− 2

k

k∑
j=1

cj

(
p∑

i=1

di ,j di ,m

)
.

4. The combined pairwise dissimilarities from the k genes
is then the mean of the scaled dissimilarities, 1

k Ds1,
where 1′ = (1, 1, . . . , 1)1×k .
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The MinCV Scale Coeff icients
An alternative method is to minimize the squared coeffi-
cient of variation (CV). Because larger dissimilarities usu-
ally have larger variances than smaller dissimilarities, a
variance-based criterion like the MinVar may result in scale
coefficients that are biased in favor of minimizing the vari-
ances of taxa pairs with larger dissimilarities, resulting in an
incorrect estimate of topology locally for the taxa, which are
close to each other. For theMinCV, the variances are scaled
by the square of the mean. Hence, the scale coefficients de-
terminedwith theMinCVwill tend to avoid suchbias as that
from the MinVar method. In addition, the CV is unitless.
Using the same notation as above, instead of minimizing
equation (8), we now wish to minimize the sum of the
squared CV:

p∑
i=1

CV2
i =

p∑
i=1

⎛
⎜⎜⎜⎜⎜⎝

1
k

k∑
j=1
(cj di ,j )2 −

(
1
k

k∑
j=1

cj di ,j

)2

(
1
k

k∑
j=1

cj di ,j

)2

⎞
⎟⎟⎟⎟⎟⎠(9)

∝
p∑

i=1

⎛
⎜⎜⎜⎜⎜⎝

k∑
j=1
(cj di ,j )

2

(
k∑

j=1
cj di ,j

)2

⎞
⎟⎟⎟⎟⎟⎠−

p

k
. (10)

Since this minimization problem cannot be solved analyt-
ically, we solve it using a numerical method instead. We
start by setting the scale coefficients as the MinVar scale
coefficients. We then use the nonlinear minimization func-
tion nlm() available in the R package nlme (Pinheiro et al.
2009) to find the set of scale coefficients c = (c1, c2, . . . , ck )
(with c1 = 1) that minimizes equation (9). The combined
pairwise dissimilarities for the k genes is then the mean of
the scaled dissimilarities, 1k Ds1, where 1

′ = (1, 1, . . . , 1)1×k .

Methods to Build Trees
To obtain phylogenetic trees from our combined dissimi-
larity matrix across genes, two distance-based tree building
methods, that is, BIONJ (Gascuel 1997) and the Fitch–
Margoliash least squares method implemented in the pro-
gram FITCH in PHYLIP (Fitch and Margoliash 1967), are
applied. The Neighbor-Joining (NJ) algorithm, first intro-
duced by Saitou and Nei (1987) and revised by Studier and
Keppler (1988), is an agglomerative clustering algorithm
based on the principle of minimum evolution. BIONJ is a
modified version of the NJ algorithm, which has been shown
to return trees closer to the minimum evolution tree (Gas-
cuel 1997). Fitch and Margoliash (1967) used a weighted
least squares criterion to find an optimal tree. Since greater
distances are more liable to have larger random errors asso-
ciated with them, larger distances are given smaller weights
in the FITCHmethod (Felsenstein 2003). Thismethod some-
times performs slightly better than the NJ algorithmbut has
a greater computational cost since it involves searching the
entire tree space (Kuhner and Felsenstein 1994).

Bootstrap Sampling Methods
To obtain an empirical distribution of the spectral
covariance-based dissimilarity, we use a resamplingmethod
that maintains some of the structural information present
in the data. Since the spectral covariance assumes a de-
pendence structure between individual sites of a protein
sequence, the chosen method must also preserve the
dependence structure present in the original sequences.
We use a variation of the block sampling method intro-
duced by Kunsch (1989). Instead of sampling blocks with
replacement, the blocks are sampled without replacement
to obtain 100 permutation samples. This is equivalent to
randomly selecting 100 permutations from the b ! possible
permutations of blocks, where b is the total number of
blocks. As the spectral covariance method of comparing
sequences is based on the periodicity inherent in protein
structures, an appropriate block size is determined using
information known about the periodicity of these protein
structures. It is known that α-helices have a periodicity of
3.6 residues,β-strands have a periodicity of 2.3 residues, and
310-helices have a periodicity of 2.5–3 residues. Although
the length of loops can vary, it is known that turns have
a periodicity of 3–4 residues. Motifs within a protein are
comprised of helices and strands connected by loops and
turns. The periodicity of these repeated motifs is known
to be 8–14 residues in length (Collins et al. 2006). Hence,
a block size of 14 is used to ensure as much structural
information as possible was retained in the bootstrap
permutation samples.

To quantify the variation of our estimated trees, we use
two different distance measures for tree topologies. The
Robinson–Foulds (RF) distance measure implemented in
the PHYLIP program treedist (Felsenstein 1989) counts the
number of bipartitions that are present in one tree and not
in another tree. The RF distance takes values in the inter-
val [0, 2(n − 3)], where n is the number of taxa (leaves)
in the tree (Felsenstein 1989). The quartet distance imple-
mented in Quartet Suite v1.0 (Piaggio-Talice et al. 2004) is
a measure of the proportion of quartets that are resolved
differently in two trees. It is a count of the number of quar-
tets resolved differently in the input tree and the reference
tree divided by the number of quartets resolved in the refer-
ence tree,

(
n
4

)
, wheren is the numberof taxa in the reference

tree. This value is then subtracted from one to get a quartet
similarity.

RF distances and quartet similarities were computed be-
tween the tree estimated with the original sequences and
each bootstrap permutation tree to obtain 100 RF distances
and 100 quartet similarities. When calculating quartet
similarities, the tree from the original sequences was taken
as the reference tree.

Simulation Methods
Ideally, the simulated sequences should retain the depen-
dence between sites and the periodic structure of the
true protein sequences. However, there are no methods or
software packages so far to completely fulfill this require-
ment. Here, we simulate data using the program Seq-Gen
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(Rambaut and Grassly 1997) under the Jones-Taylor-
Thornton (JTT) model of amino acid substitution. It is
important to note that the JTT model of evolution
assumes that sequence sites evolve independently, and thus,
sequences simulated with Seq-Gen will not necessarily re-
tain the structural information present in the sequences.
However, since the sequences simulated by Seq-Gen on an
evolutionary tree have all evolved from the same ancestral
taxonwhich is an extant sequence, the sites in the simulated
sequences are not truly independent. The structural or pe-
riodic signals in the sequences are better kept if the tree on
which the simulations are based is not very deep. Hence, we
would expect our method to recover the reference tree in
such cases.

Data
Four different data sets are used in this paper to illustrate
our methods. We begin with an exploratory analysis on
a noncontroversial eukaryote data set provided courtesy
of Dr Andrew Roger (Center for Comparative Genomics
and Evolutionary Bioinformatics, Dalhousie University).We
then apply our methods to the nematode data set pub-
lished in Foster and Hickey (1999) and a chloroplast data
set (Ané et al. 2004; Gruenheit et al. 2008; Wu and Susko
2009). Finally, simulations are generated based on a five-
taxa primate data set and the nematode data set. Sequences
for each gene were downloaded from GenBank. GenBank
accession numbers for the nematode data, chloroplast data,
and primate data used for this analysis can be found in the
supplementary tables A–C, SupplementaryMaterial online.
The sequences were then aligned using ClustalW in Bioedit,
and the parts of the alignments forwhich one ormore of the
sequences hadgapswere removed, so that the sequences for
each gene all have the same length (Hall 1999).

The eukaryote data set consists of 35 ribosomal proteins
and 17 taxa.

The nematode data set consists of the 12 mitochondrial
protein-coding genes common to eight animals. This data
set is known to have a problem with both long-branch at-
traction and compositional bias (Foster and Hickey 1999).
There are two rival theories as to where the nematodes
should branch in relation to other animals: the ecdysozoa
hypothesis and the coelomata hypothesis. Aguinaldo et al.
(1997) first proposed a clade of moulting animals, which
includes nematodes and arthropods, based on a phyloge-
netic analysis of 18S ribosomal DNA sequences. They chose
Trichinella spiralis as a representativenematode on account
of its evolving more slowly than other nematodes, such as
Caenorhabditis elegans which is used in our analysis. Their
results indicated a strong relationship between the nema-
tode and the arthropods. Dopazo and Dopazo (2005) car-
ried out a phylogenetic analysis on the complete genomes
of 11 taxa and also found strong support for the ecdyso-
zoa hypothesis. In their analysis, Dopazo andDopazo (2005)
excluded the fast-evolving sequences of C. elegans. How-
ever, other analyses have rejected the ecdysozoa hypothesis.
Rogozin et al. (2007) performed a genome-wide analysis us-
ing a type of rare genomic changes robust to long-branch at-

traction and taxon sampling and found strong support for
the coelomata hypothesis. Blair et al. (2002) analyzed 100
individual proteindata sets consistingof four taxa and again
found strong support for the coelomata hypothesis. They
argued that the findings of Aguinaldo et al. (1997) were due
to the analysis being performed on a single gene. Philippe,
Brinkmann, et al. (2005) argued that strong support for the
coelomata theory was due to sparse taxon sampling. Their
analysis of 146 genes from a sample of 35 taxa provided
strong support for the ecdysozoa hypothesis. The debate
regarding the correct placement of the nematodes remains
unresolved, with analyses on different taxa samples and dif-
ferent genes returning conflicting results.

For the chloroplast phylogenetic tree, our final data set
consisted of 25 proteins from 22 taxa. For this data, there
has been some debate over the placement of Amborella
trichopoda within the angiosperms. The majority of analy-
ses place Amborella as the most basal of the angiosperms
(Qiu et al. 1999; Soltis et al. 1999; Zanis et al. 2002). How-
ever, in some cases, a “Amborella + Nymphaea” clade was
found to bemost basal (Barkman et al. 2000). An alternative
topology was presented by Goremykin et al. (2003), which
placed the monocots as the most basal of the angiosperms.
However, this topology was refuted by Soltis and Soltis
(2004), Stefanovic et al. (2004) and later Goremykin and
Hellwig (2006) who showed that model misspecification
and long-branch attraction were the cause of the mono-
cot first topology. Still, the true relationships among the
angiosperms are not well resolved and resolution of the
clade continues to be poor (Soltis et al. 2005).

The primate data set has five taxa: gibbon, orangutan,
gorilla, chimp, and human. It consists of 13 mitochondrial
protein-coding genes.

Results
Results on the Eukaryote Data Set
We begin by applying all combinations of methods on the
noncontroversial eukaryote data set. The eukaryote data set
consists of 17 taxa of plants, animals, and fungi for 35 ribo-
somal proteins.Dissimilaritymatrices were computed using
the common scaling covariance and the taxa-specific scal-
ing covariance. Both MinVar andMinCV criteria were used
to obtain scale coefficients with which to combine genes.

To determine which, if any, of the four methods for
computing dissimilarities give similar results, we performed
an initial comparative analysis of the dissimilarity matri-
ces computed from these four techniques. Figure 1 shows
the pairwise scatter plots with regression lines for the
dissimilarities from each pair of methods.

The dissimilarity measures obtained from all four differ-
ent methods are highly correlated, with Pearson correla-
tions ranging from 0.9693 to 0.9881. The high correlation
between the suites of methods suggests that the different
techniques should return similar tree estimates.

Figure 2 shows the reference tree for the eukaryote
data (Keeling et al. 2009). Trees are obtained using both
BIONJ and FITCH. Thus, there are in total eight different
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FIG. 1.Comparisons of the eukaryote data set dissimilarities obtained with common scaling (ComScal) and taxa-specific scaling (TaxaSpec) meth-
ods combined withMinVar and MinCV criteria (with Pearson correlation coefficient, r).

methods to build trees. The inferred trees by the eight
different methods are shown in figures 3 and 4. All trees
recover the major clades of plants, animals, and fungi. The
MinCV taxa-specific scaling trees both recover the exact
topology seen in the reference tree. The MinCV common
scaling trees place Schizosaccharomyces pombe and Can-
dida albicans as sister taxa, rather than branching S. pombe
first, but otherwise recover the reference tree. All the Min-
Var trees erroneously place Drosophila melanogaster as the
most basal animal. Both MinVar BIONJ trees erroneously
place Neurospora crassa and Magnaporthe grisea closer to
Ustilago maydis and Cryptococcus sp. than to S. pombe and
C. albicans.

Table 1 summarizes the topological features recovered
in each of the estimated trees as well as the bootstrap
support for each feature. The accurate separation of all
taxa into their major clades is recovered in all 100 boot-
strap replicates under all eight methods. The branching of

FIG. 2. Reference tree topology from Tree of Life web project for
the eukaryote data set with 17 taxa (http://tolweb.org/Eukaryotes/
3/2009.10.28) (Keeling et al. 2009).

Dictyostelium discoideum as basal in the animal clade has
100% bootstrap support in both the MinCV taxa-specific
scaling trees but only weak support under the other six
methods. The recovery of the reference tree topologywithin
the three main clades has strong bootstrap support in all
four MinCV trees. In the MinVar trees, the incorrect place-
ment of D. melanogaster as most basal in the animal clade
is strongly supported by the bootstrap replicates. Both
MinVar BIONJ trees show strong bootstrap support for
branching N. crassa and M. grisea with U. maydis and
Cryptococcus sp. rather than S. pombe and C. albicans (99%
under the common scaling method and 85% under the
taxa-specific scalingmethod).

To measure the variance about the tree estimates for
each method, we looked at the quartet similarities between
the trees estimated from the block bootstrap samples and
the trees estimated on the original sequences by all eight
combinations of methods. Table 2 shows the computed
quartet similarities. The columns show the number of boot-
strap trees out of 100 whose quartet similarities fall within
a given interval. The intervals are split according to all the
resulting quartet similarity values. Although all methods
give comparable results, one can see that the taxa-specific
scaling with the MinCV method appears to be the most
stable with a lower bound of 0.9118 quartet similarity. The
meanquartet similarity values are 0.9619 and0.9730, respec-
tively, for BIONJ and FITCH. Thus, the taxa-specific scaling
with the MinCV method has the smallest variability about
the estimated trees. The common scaling covariance-based
trees have greater variability than the taxa-specific scaling
trees with a lower bound of quartet similarity of 0.9008 for
both MinVar trees and 0.9025 and 0.8840 for MinCV trees.

The RF distances show a similar pattern. The eukaryote
data set with 17 taxa has 14 interior nodes; hence, the maxi-
mum possiblevalue for the RF is 28. Taxa-specific scaling co-
variance trees have a maximumRF distance of four with the
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FIG. 3. Estimated BIONJ and FITCH trees for eukaryote data set when common scaling and taxa-specific scaling dissimilarities for multiple genes
are combined with the MinVar criterion. Common scaling with BIONJ (top left) and FITCH (bottom left), taxa-specific scaling with BIONJ (top
right) and FITCH (bottom right).

majority of trees having distances less than two. The com-
mon scaling covariance trees have a maximum RF distance
of six with majority of trees having distances less than four.

The MinCV method with the taxa-specific scaling ap-
pears to have the smallest variance, recovering the reference
tree topology with strong bootstrap support. The MinCV
with the common scaling also has relatively small variance
about the estimated tree. The MinVar trees appear to have

more erroneously placed branches than the MinCV trees,
and these incorrect topologies are strongly supportedby the
corresponding bootstrap trees.

Although the differences in the estimated trees recov-
ered from the four dissimilarity matrices are small, the
MinCVmethod appears to return amore accurate topology
than the MinVar method. Hence, for the remaining two
data sets, we focus on the results obtained using the

FIG. 4. Estimated BIONJ and FITCH trees for eukaryote data set when common scaling and taxa-specific scaling dissimilarities for multiple genes
are combined with the MinCV criterion. Common scaling with BIONJ (top left) and FITCH (bottom left), taxa-specific scaling with BIONJ (top
right) and FITCH (bottom right).
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Table 1. Bootstrap Support of the Topological Features for the Eukaryote Tree under Different Methods.

Topological Features
Recov. of Tree, DistDisc DistDisc in DrosMela HydrMagn NeurCras/ NeurCras/

Animal, Basal Fungus Basal Basal MagnGris with MagnGris with
Trees Fungus Clades to Animals Clade to Animals to Animals SchiPomb/CandAlbi UstiMayd/CryptoSp

MinVar ComScal BIONJ 100 6 94 100 0 1 99
MinVar ComScal FITCH 100 3 97 91 0 95 2
MinCV ComScal BIONJ 100 37 63 2 98 86 0
MinCV ComScal FITCH 100 48 52 0 100 91 0
MinVar TaxaSpec BIONJ 100 31 69 100 0 15 85
MinVar TaxaSpec FITCH 100 32 68 83 17 85 11
MinCV TaxaSpec BIONJ 100 100 0 6 94 74 0
MinCV TaxaSpec FITCH 100 100 0 0 100 82 0

MinCV for both the common scaling and taxa-specific
scaling covariance-based dissimilarity measures.

Results on the Nematode Data Set
The nematode data set consists of 12 protein-coding genes
common to eight taxa presented in Foster and Hickey
(1999). There are two rival theories concerning where the
nematodes should be placed in the tree. The ecdysozoa the-
ory favors a clade ofmoulting animals, grouping nematodes,
and arthropods together (Aguinaldo et al. 1997; Dopazo and
Dopazo 2005). The coelomata theory places nematodes as
basal to the vertebrates and arthropods (Blair et al. 2002;
Rogozin et al. 2007). Figure 5 shows the trees under these
two hypotheses. The nematode data set is known to have
problems with compositional bias and long-branch attrac-
tion, which results in the honeybee (Apis mellifera) and the
roundworm (C. elegans) being branched as sister taxa with
strong bootstrap support (Foster and Hickey 1999). Again,
we begin with an exploratory analysis of the dissimilari-
ties computed from the common scaling and taxa-specific
scaling covariances with MinCV scale coefficients. A scatter
plot with regression of the MinCV dissimilarities under the
taxa-specific scaling versus the common scaling method is
shown in figure 6. For this data, the correlation between the
twomethods is very high with r = 0.9848. The largest resid-
ual is associated with dissimilarities between honeybee and
roundworm, followed by chicken and sea urchin, honeybee
andAllomycesmacrogynus, and honeybee andbrine shrimp.
The large residual corresponding to chicken and sea urchin
is a bit surprising as these two taxa are fairly noncontrover-
sial with regards to their placement in the tree.

The MinCV trees obtained with the four methods are
shown in figure 7. The placement of the taxa relative to
each other corresponds to the grouping seen under the
ecdysozoa hypothesis. The common scaling covariance with
the BIONJ and the taxa-specific scaling with FITCH both
return trees with the same topology as the reference tree
under the ecdysozoa hypothesis. The common scaling co-
variance with FITCH erroneously places the honeybee as
basal to the other arthropods, whereas the taxa-specific
scaling covariance with BIONJ tree erroneously places the
roundworm and honeybee together as sister taxa. Hence,
honeybee, roundworm, and brine shrimp, which have large
residuals associated with their dissimilarities in the initial
regression, vary in their relative positions in the trees under
the two different spectral covariance methods.

Table 3 shows the bootstrap support for the topologi-
cal features for the nematode tree under differentmethods.
The placement of the taxa in agreement with the ecdysozoa
hypothesis has strong bootstrap support in both common
scaling trees (100% with BIONJ and 99% with FITCH).
Fifty-two percentage of the taxa-specific scalingBIONJ trees
support the ecdysozoa hypothesis topology, whereas 67 %
of the taxa-specific scaling FITCH tree support the coelo-
mata theory. The placement of brine shrimp as the most
basal of arthropods recovered in the common scaling BIONJ
tree and the taxa-specific scaling FITCH tree has no boot-
strap support. The erroneous branching of honeybee as the
basal animal has moderate bootstrap support in both com-
mon scaling trees and the taxa-specificBIONJ tree andweak
bootstrap support in the taxa-specific FITCH tree. Separa-
tion of the honeybee and the roundworm occurs in 63%
of bootstrap trees for both BIONJ and FITCH common

Table 2. Eukaryote Data: Quartet Similarity between Bootstrap Trees and Original Data Trees.

Number of Bootstrap Permutation Trees with Percentage of Identically ResolvedQuartets
ComScal + MinVar ComScal + MinCV TaxaSpec + MinVar TaxaSpec + MinCV

Quartet Similarity (X) BIONJ FITCH BIONJ FITCH BIONJ FITCH BIONJ FITCH

[0.88,0.93) 53 27 1 13 11 24 23 13
[0.93,0.96) 10 25 93 84 58 42 24 20
[0.96,0.99) 28 24 0 0 4 7 21 24
1.00 9 24 6 3 27 27 32 43
Mean 0.9488 0.9605 0.9428 0.9378 0.9527 0.9423 0.9620 0.9730
Min 0.9008 0.9008 0.9025 0.8840 0.9025 0.9025 0.9118 0.9118
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FIG. 5. Reference topology for the nematode data set under the
ecdysozoa hypothesis (left) and coelomata hypothesis (right) (Blair
et al. 2002).

scalingmethods, 62% of bootstrap trees for the taxa-specific
BIONJ method, and 69% of bootstrap trees for the taxa-
specific FITCH method. A combination of long-branch at-
traction and compositional bias often causes the honeybee
and roundworm to be grouped as sister taxa (Foster and
Hickey 1999), but here, all four methods are able to separate
these two with moderate bootstrap support.

Table 4 shows the quartet similarities between the boot-
strap trees and the original data tree for the nematode data.
Variability about the tree estimates for this data is greater
than that of the eukaryote data, withminimumquartet sim-
ilarites of 0.5429 and0.5857 for the taxa-specific scaling trees
and 0.7143 and 0.8714 for the common scaling trees. The
mean quartet similarity is 0.8440 for common scaling BIONJ

trees and 0.9444 for common scaling FITCH trees, compared
with 0.8091 and 0.7246 for the corresponding taxa-specific
scaling trees.

The RF distances show the same pattern. For the ne-
matode data set with five interior nodes, the maxim-
ium possible value for RF distance is ten. Taxa-specific
scaling trees have a maximum distance of six with the
majority of distances being four or less. The common scaling
covariance-based BIONJ trees have a maximum distance of
four with the majority of trees having values less than two.
The common scaling covariance-based FITCH trees have a
maximum distance of two, with 56 of the 100 RF distances
being zero.

Results on the Chloroplast Data Set
The chloroplast data set consists of 25 chloroplast proteins
from 22 taxa. There has been some debate over the place-
ment of A. trichopoda within the angiosperms. Most analy-
ses place A. trichopoda as the most basal angiosperm (Qiu
et al. 1999; Soltis et al. 1999; Zanis et al. 2002); though in
some cases, a Amborella + Nymphaea clade was found to
bemost basal (Barkman et al. 2000). Goremykin et al. (2003)
found an alternative topology, which placed the monocots
as themost basal of the angiosperms, although this topology
was later found to be erroneous (Soltis and Soltis 2004; Ste-
fanovic et al. 2004; Goremykin and Hellwig 2006). Figure 8
shows the reference tree for the chloroplast data (Ané et al.
2004; Soltis et al. 2005).

FIG. 6. Comparisons of the nematode data set dissimilarities computed with the common scaling (ComScal) method and combined with the
MinCV criterion and the taxa-specific scaling (TaxaSpec) method combined with theMinCV criterion (Pearson correlation= 0.9848). Taxa pairs
with largest discrepancy in dissimilarities computed under these twomethods shown with arrows.

588

 at D
alhousie U

niversity on January 11, 2013
http://m

be.oxfordjournals.org/
D

ow
nloaded from

 

http://mbe.oxfordjournals.org/


Phylogenetic Analysis Based on Spectral Methods · doi:10.1093/molbev/msr205 MBE

FIG. 7. Estimated BIONJ and FITCH trees for the nematode data set when common scaling and taxa-specific scaling dissimilarities for multiple
genes are combined with the MinCV criterion. Common scaling with BIONJ (top left) and FITCH (bottom left), taxa-specific scaling with BIONJ
(top right) and FITCH (bottom right).

We begin with an analysis on all 25 genes in chloroplast
data set and then discuss how this differs from an initial
analysiswe did on a smaller chloroplast data set, which con-
sisted of only 19 of the 25 chloroplast proteins. The same 22
taxa were used in both analyses.

Again, we focus on theMinCVmethod and compare two
differentmethods of scaling and two different tree building
methods. A scatter plot with regression of the taxa-specific
scaling versus common scaling dissimilarities is shown in
figure 9. Once more, correlation between the two meth-
ods is fairly high with r = 0.9639. The largest residuals in
the chloroplast data set correspond to the dissimilarities be-
tween the green algae Chlorella vulgaris, Mesostigma viride,
and Nephroselmis olivacea.

The real data trees are shown in figure 10. In all four trees,
the separation of green algae, nonseed plants, and seed
plants is recovered. Acorus americanus should be grouped
with the other monocots within the angiosperm clade but
is instead placed with the eudicots in all four trees. Also,
Psilotum nudum erroneously branches with the mosses

and liverworts rather than with the other fern, Adiantum
capillus-veneris. The taxa-specific scaling trees place A.
trichopoda and Nymphaea alba as sister taxa, whereas the
common scaling trees place Calycanthus floridus and A.
trichopoda as sister taxa. In all four trees, a clade with A.
trichopoda,N. alba, andC. floridus is basal in the angiosperm
clade.

Table 5 shows the topological features and the boot-
strap support for each feature given by the four different
methods. The correct separation of taxa intomain clades of
green algae, nonseed plants, seed plants, and angiosperms
has 100% bootstrap support in all four methods. There is
also strong bootstrap support for a cladewithA. trichopoda,
N. alba, and C. floridus as basal in the angiosperm clade
(100% for all four methods). The branching of A. trichopoda
and N. alba as sister taxa has moderate support in the
common scaling FITCH tree and both taxa-specific trees
(51–66%). The branching of N. alba and C. floridus as sis-
ter taxa is strongly supported by the common scaling BIONJ
tree. The branching of the two ferns, P. nudum and A.

Table 3. Bootstrap Support of the Topological Features for the Nematode Tree under Different Methods.

Topological Features
Agrees with Agrees with Sep. of Honeybee Honeybee and Brine Shrimp Honeybee Basal

Trees Ecdysozoa Coelomata and Nematode Nematode Sister Taxa Basal to Arthropods to Arthropods

MinCV ComScal BIONJ 100 0 63 37 0 63
MinCV ComScal FITCH 99 1 63 37 0 63
MinVar TaxaSpec BIONJ 52 48 62 38 2 61
MinVar TaxaSpec FITCH 30 67 69 31 0 43

NOTE.—Sep., separation
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Table 4. Nematode Data: Quartet Similarity between Bootstrap Trees and Original Data Trees.

Number of Bootstrap Permutation Treeswith Percentage of Identically ResolvedQuartets
ComScal + MinCV TaxaSpec + MinCV

Quartet Similarity (X) BIONJ FITCH BIONJ FITCH

[0.54,0.75) 37 0 48 30
[0.75,0.85) 0 0 14 65
[0.85,0.99) 44 44 0 2
1.00 19 56 38 3
Mean 0.8440 0.9444 0.8091 0.7246
Min 0.7143 0.8714 0.5429 0.5857

capillus-veneris, as sister taxa has moderate support in both
taxa-specific trees (55% with BIONJ and 52% with FITCH).
The erroneous placement of P. nudumwith the mosses and
liverwort seems to occur in all common scaling BIONJ trees
and 78% of the common scaling FITCH trees.

Table 6 shows the quartet similarities between the boot-
strap permutation trees and the corresponding real data
trees. Mean quartet similarities for all four methods are
very close, with the means for the taxa-specific trees be-
ing slightly higher than the means for the common scaling
trees. For the taxa-specific scaling trees, the mean quartet
similarities are 0.9852 and 0.9890 with BIONJ and FITCH, re-
spectively. The common scaling trees have corresponding
mean quartet similarities of 0.9771 and 0.9778. Minimum
quartet similarities are all greater than 0.93. There appears
to be greater variability about the trees estimated from the
common scaling-baseddistances than those estimated from
the taxa-specific scaling distances. For the chloroplast data
set with 22 taxa, the maximum possible value the RF can
attain is 38. The RF distances are consistent with the quar-
tet similarities, with common scaling covariance-based trees
attaining a maximum RF distance of 14 using FITCH and 10
using BIONJ, whereas the taxa-specific scaling covariance-
based trees attain amaximumRF distance of 10 using FITCH
and 8 using BIONJ.

The strong bootstrap support obtained for the trees
estimated from these 25 genes was somewhat surprising
as analyses on a subset of 19 genes of these 25 resolved
the angiosperm clade very differently. When only 19 genes

FIG. 8. Reference tree topology for the chloroplast data set with 22
taxa (Ané et al. 2004; Soltis et al. 2005).

were included in the analyses, all methods returned the er-
roneous monocot first tree with strong bootstrap support.
Removing those 19 genes for which the monocot distances
were relatively large with respect to the other angiosperms
still resulted in a monocot first tree. We then added genes
atpI, clpP, psaB, psaC, rbcL, and rpoC1. Including these genes
resulted in a clade consisting ofA. trichopoda,N. alba, andC.
floridus being basal in the angiosperm clade. Figure 11 shows
the common scaling MinCV distances of nonmonocot
angiosperms versus the three monocots, when 19 and 25
genes are used in the analyses.

In the case of Zea mays and Oryza sativa, adding the six
additional genes results in larger MinCV common scaling
distances between these two monocots and A. trichopoda,
N. alba, and C. floridus, whereas the corresponding dis-
tances between these two monocots and the eudicots is
only slightly greater except in the case of Lotus cornicula-
tus. The 19-geneMinCV common scaling distances between
Triticum aestivum, the eudicots, tend to be greater, whereas
the distances between T. aestivum and the A. trichopoda,

FIG. 9. Comparisons of the chloroplast data set dissimilarities com-
puted with the common scaling (ComScal) method and combined
with the MinCV criterion and the taxa-specific scaling (TaxaSpec)
method combined with the MinCV criterion (Pearson correlation=
0.9639). Taxa pairs with the largest discrepancy in dissimilarities
computed under these two methods shown with arrows.
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FIG. 10. Estimated BIONJ and FITCH trees for the chloroplast data set when common scaling and taxa-specific scaling dissimilarities for multiple
genes are combined with the MinCV criterion. Common scaling with BIONJ (top left) and FITCH (bottom left), taxa-specific scaling with BIONJ
(top right) and FITCH (bottom right).

N. alba, and C. floridus are smaller. The distance between T.
aestivum and the other twomonocots is also greater within
the monocot clade. The taxa-specific scaling distances re-
turn similar results. Clearly, the six additional genes are
highly influential in determining the relative placement of
the taxa in the angiosperm clade of the combined gene tree.

Simulations
We simulated data based on two different data sets, a
primate data set consisting of five taxa: gibbon, orangutan,
gorilla, chimp, and human and the nematode data set used
in the analysis above. For both data sets, the trees obtained
by the common scalingmethod combined with the MinCV
criterion are used as the input trees in Seq-Gen.We reduced
both the sequence similarity and the structure similar-
ity in the simulated sequences by increasing the branch
lengths, and these results are comparedwith those obtained
with the block bootstrap permutations where the structure

similarity is partially preserved. Note that the simulation
method may be somewhat biased against our method since
one would expect structural patterns to be maintained
by natural selection as well as deriving from the ancestral
sequence.

Simulations Generated from Primate Data Set
Figure 12 shows the reference tree topology for the five
taxa in our data set (Tree of Life Web Project, 1999). This
topology is also estimated by all our eight combinations of
methods applied on the primate data set.

Throughout the whole simulation, the sequence of gib-
bon is specifiedas the ancestral sequence.Wefirst simulated
1,000 data sets for each gene based on the tree shown in
figure 12, with branch lengths estimated by common scal-
ing MinCV method and call this simulation scheme S1.
We then repeated this process to create 2 additional
sets of 1,000 data sets, in which the branch lengths of
the input tree are multiplied by 100 and 1,000, and

Table 5. Bootstrap Support of the Topological Features for the Chloroplast Tree under Different Methods.

Topological Feature

Recov. of Green Algae, Amborella, Nymphaea, Amborella Nymphaea Psilotum
Nonseed Plant and Calycanthus Clade Basal and Nymphaea and Calycanthus and Adiantum

Trees Angiosperm Clade in Angiosperm Clade Sister Taxa Sister Taxa Sister Taxa

MinCV ComScal BIONJ 100 100 29 22 71
MinCV ComScal FITCH 100 100 66 22 34
MinVar TaxaSpec BIONJ 100 100 56 44 44
MinVar TaxaSpec FITCH 100 100 51 49 49
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Table 6. Chloroplast Data: Quartet Similarity between Bootstrap Trees and Original Data Trees.

Number of Bootstrap Permutation Treeswith Percentage of Identically ResolvedQuartets

ComScal + MinCV TaxaSpec + MinCV

Quartet Similarity (X) BIONJ FITCH BIONJ FITCH

[0.93,0.96) 23 24 1 0
[0.96,0.99) 74 65 79 61
1.00 3 11 20 39
MEAN 0.9771 0.9778 0.9852 0.9890
MIN 0.9315 0.9481 0.9571 0.9669

we call these two simulations schemes S100 and S1000,
respectively. We compared the analysis performed on
these simulated data with the analysis performed on the
block bootstrap permutations on all eight combinations of
methods.

For the 1,000 data sets simulated under S1, 100% of
the estimated trees from the simulated data recover the
same topology as the reference tree for all eight methods.
Figure 13A shows the majority rule consensus tree from S1
obtained by the common scalingmethodwithMinCV crite-
rion. All other seven methods result in the same consensus
tree shown in figure 13A .

The sequences within the primate data set have high se-
quence similarity (90–100%). This level of sequence sim-
ilarity is also present in the S1-simulated sequences. The
sequence similarities are reduced to 10–50% for the S100
scheme and less than 10% for the S1000 scheme. Table 7
shows the proportion of trees, which recover the reference
tree under the different simulation schemes. We also per-
formed 1,000 block bootstrap permutations with block size

14 for each gene of the primate data set and applied all
eightmethods. The last row in table 7 shows the proportion
of correctly estimated trees under the block bootstrap
permutations.

For the primate data, with average sequence similar-
ities greater than 10%, all the trees based on simulated
sequences recover the reference tree. When sequence simi-
larity is less than 10%, only 4–10% of estimated trees recover
the topology of the reference tree. For the block bootstrap
permutation samples, 88–98% of trees based on the per-
muted sequences recover the reference tree. For the pri-
mate data, our methods are fairly robust when sequence
similarity is reduced.

Simulations Generated from Nematode Data Set
For the nematode data set, the sequence of A. macrogynus
is specified as the ancestral sequence for Seq-Gen simula-
tions. Again, we simulated 1,000 data sets for each gene. As
with the primate data, we will call the simulation based on
the tree estimated by the common scaling MinCV method

FIG. 11. Common scaling distances for monocots versus other angiosperms for 19 and 25 genes combined with MinCV.
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FIG. 12. Reference tree for the primate data set from http://tolweb.
org/Catarrhini/16293/1999.01.01.

simulation scheme S1 and repeat the process to create 2 ad-
ditional sets of 1,000 data sets, in which the branch lengths
of the input tree are multiplied by 25 and by 100. We refer
to these simulation schemes as S25 and S100, respectively.
Sequences simulated under simulation scheme S1 have
sequence similarities between 9.2% and 82.4%, whereas
sequence similarities under simulation schemes S25 and
S100 are reduced to 2–30% and 0–13.6%, respectively.

The input tree topology for Seq-Gen simulations agrees
with the ecdysozoa hypothesis. We do not discount the pos-
sibility that the topology under the coelomata hypothesis
is correct. However, since the purpose of the simulations is
to determine support for our methods that recovers trees,
which agree with the reference topology under the ecdyso-
zoa hypothesis, ourdatawere simulatedunder this topology
rather than that under the coelomata hypothesis. Table 8
shows the proportion of trees, which recover the topolo-
gies for both the ecdysozoa and coelomata hypotheses. It is
not surprising that noneof the trees based on the simulated
sequences agree with the coelomata hypothesis as they
were simulated under an ecdysozoa tree. Of the trees esti-
mated from the data generated under simulation scheme
S1, 83.6–93% recover the input tree. For data generated un-
der simulation scheme S25, 44.5–46.4% of the estimated
common scaling trees recover the input tree, whereas the
recovery rates of estimated taxa-specific scaling trees are
0–0.3%. Under simulation scheme S100, none of the esti-
mated trees recover the input tree. For the common scaling
trees based on bootstrap permutations, 68.2–95.6% recover
the tree that agrees with the ecdysozoa topology. Of the
taxa-specific scaling trees based on bootstrap permutations,

42–79% recover the tree that agrees with the coelomata
hypothesis.

Analysis of Simulation Results
For data generated with Seq-Gen, both sequence and struc-
ture similarity are preserved when branch lengths are short,
as is the case under simulation scheme S1. The fact that
our methods can recover the input tree with such a high
rate for simulation scheme S1 shows the effectivenessof the
proposed methods. When sequence and structure similar-
ity are reduced, the recovery rate drops correspondingly.
Fromthe simulation results, we see that the recovery rates of
the four methods based on the taxa-specific scaling decline
much more quickly than that of the fourmethods based on
the common scaling. This perhaps shows that the methods
based on the common scaling are more sensitive in picking
up the weak sequence and structure similarity signals, and
that the common scalingmethod is preferred over the taxa-
specific scaling method from this aspect.

The block bootstrap permutations completely preserve
the sequence similarity of the original sequences but only
partially preserve the structure similarity. For the primate
data, there is no controversy about which tree is the right
tree. The high-recovery rate of the right tree under block
bootstrap permutation of the data shows that such a boot-
strap method is valid. For the nematode data set, the true
tree is unknown. The estimated common scaling trees based
on bootstrap permutation samples strongly support the
ecdysozoa hypothesis, whereas the estimated taxa-specific
scaling trees showmoderate to strong support to the coelo-
mata hypothesis. Although these results reflect the un-
certainty in the evolutionary position of the nematode,
we do see slightly stronger evidence to support ecdysozoa
hypothesis from our study of this data set.

Permutations
To further validate the covariance-based methods, we per-
formed further analyses on 1,000 block size 1 permuta-
tion samples taken from the nematode data set. Permu-
tations were computed using the SEQBOOT program in
PHYLIP (Felsenstein 1989). We compared the distances ob-
tained from the block size 1 permutation samples with
those obtained from the block size 14 permutations. Recall

FIG. 13. Primate majority-rule consensus trees estimated with the common scaling (ComScal) method and combined with the MinCV criterion
for 1,000 Seq-Gen–simulated sequences (left) and 1,000 block bootstrap permutation sequences (right).
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Table 7. Proportionof SimulatedTreeswithVarying Levels of Sequence Identity and BlockPermutationTreeswhichRecover thePrimateReference
Tree.

Simulation MinCV MinVar MinCV MinVar MinCV MinVar MinCV MinVar
Scheme ComScal ComScal ComScal ComScal TaxaSpec TaxaSpec TaxaSpec TaxaSpec
(% Sequence Similarity) BIONJ BIONJ FITCH FITCH BIONJ BIONJ FITCH FITCH

S1 (>90%) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
S100 (10–50%) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
S1000 (<10%) 0.053 0.053 0.066 0.066 0.041 0.041 0.101 0.103
Block Permutation (>90%) 0.982 0.916 0.975 0.908 0.972 0.886 0.969 0.88

the block size 14 permutation samples completely preserve
site similarity and partially preserve structure similarity.We
expect that the variability about the estimated tree mea-
sured by block size 1 permutation samples will be greater
than that measured by block size 14 permutation samples
as the structural signal is erased by the block size 1 per-
mutations. Results presented below are for the common
scaling covariance-based dissimilarities. Similar results were
obtained with the taxa-specific scaling covariance-based
dissimilarities.

Figure 14 shows common scaling MinCV majority-rule
consensus trees obtained from both sets of permutation
samples. Although the consensus trees are the same, we
can see that the variability about the resolved branches is
greater for the block size 1 permutation samples than for
the block size 14 permutation samples.

Boxplots of the 1,000 pairwise distances under both per-
mutation schemes for three pairs of taxa randomly selected
from the 28 taxa pairs are shown in figure 15. The horizon-
tal line across the x axis corresponds to the common scal-
ing MinCV distance obtained from the real data. The 1,000
bootstrap distances under the block size 14 permutation
scheme have much smaller variance than the 1,000 boot-
strap distances under the block size 1 permutation scheme,
whereas those under the block size 14 permutation scheme
seem to have greater bias. However, all taxa pairs appear
to be biased in the same way (somewhat greater than the
distance computed for the real data), and hence, the rela-
tive relationship between the taxa is preserved for most of
the samples and the variance about the estimated tree is
relatively small. Although the range of the block size 1 per-
mutation sample distances always encompass the real data
distance, the median distance for different taxa pairs fluc-

tuates about the real data distance, and many of the sam-
ples have distances much higher and/or lower than the real
data distance. This in turn results in higher variance about
the estimated tree for the 1,000 block size 1 permutation
distances.

The covariance-based dissimilarities incorporate both se-
quence and structural similarity between proteins. When
the structural information is destroyed, variance of the
estimated tree increases.

Discussion
The dissimilarity matrices computed from the four tech-
niques obtained by combining a spectral covariance scal-
ingmethod with either MinVar or MinCV scale coefficients
are highly correlated. Differences in the tree estimates ob-
tained from these dissimilarities are for the most part small,
differing in the placement of only a few taxa. In the eu-
karyote data, trees estimated using the MinVar andMinCV
methods differed in their placement of D. melanogaster in
the animal clade. For the nematode data, the trees ob-
tained from the common scaling and taxa-specific scaling
methods differed in their placement of honeybee, round-
worm, and brine shrimp, relative to each other. The dissim-
ilarities between these taxa had large residuals associated
with them in the initial regression analysis. For the chloro-
plast data set, the taxa-specific scaling trees place A. tri-
chopoda and N. alba as sister taxa, whereas the common
scaling trees place C. floridus and A. trichopoda as sister
taxa.

Our exploratory analysis of the eukaryote data set
showed that the MinCV method was able to recover the
currently accepted topology shown in figure 2 with strong

Table 8. Proportion of Simulated Trees with Varying Levels of Sequence Identity and Block Permutation Trees which Recover the Nematode
Ecdysozoa and Coelomata Trees.

Simulation MinCV MinVar MinCV MinVar MinCV MinVar MinCV MinVar
Scheme ComScal ComScal ComScal ComScal TaxaSpec TaxaSpec TaxaSpec TaxaSpec
(% Sequence Similarity) Hypothesis BIONJ BIONJ FITCH FITCH BIONJ BIONJ FITCH FITCH

S1 ($10%–83%$) Ecdysozoa 0.892 0.897 0.926 0.930 0.845 0.836 0.902 0.888
Coelomata 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

S25 ($2%–30%$) Ecdysozoa 0.445 0.447 0.462 0.464 0.000 0.000 0.003 0.003
Coelomata 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001

S100 ($0%–14%$) Ecdysozoa 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Coelomata 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Block Permutation ($10%–83%$) Ecdysozoa 0.683 0.956 0.682 0.913 0.147 0.125 0.025 0.005
Coelomata 0.000 0.000 0.006 0.007 0.477 0.739 0.420 0.425
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FIG. 14.Nematode majority-rule consensus trees estimated with the common scaling method and combine withMinCV criterion for 1,000 block
size 14 permutation samples (left) and 1,000 block size 1 permutation samples (right).

bootstrap support (Keeling et al. 2009). TheMinVarmethod
was able to recover parts of this topology, but erroneously
placed taxa D. melanogaster as the most basal animal, and
was not able to recover the correct position of D. dis-
coideum. Results were the same with both the common
scaling and taxa-specific scaling. For this reason, we focused
our attention on the MinCVmethod for the remaining two
data sets.

For the nematode data, the common scaling method
supported the ecdysozoa hypothesis topology with strong
bootstrap support (Aguinaldo et al. 1997; Dopazo and
Dopazo 2005), although the honeybee was erroneously
placed as a basal arthropod in the FITCH tree. The ML
trees reported in Foster and Hickey (1999) grouped honey-
bee and roundworm together as sister taxa. The common
scaling covariance method was able to separate these two
taxa withmoderate bootstrap support. For the taxa-specific
scaling method, support for the ecdysozoa hypothesis was
weak, whereas the coelomata hypothesis had moderate
to strong bootstrap support. Roundworm and honeybee

were erroneously grouped together with weak bootstrap
support.

For the 25-gene chloroplast data, both the common scal-
ing and taxa-specific scaling methods recovered the main
clades with strong bootstrap support. Resolution of the
angiosperm clade has been extensively studied with differ-
ent topologies being recovered depending on method and
taxon sampling (Qiu et al. 1999; Soltis et al. 1999; Zanis
et al. 2002; Goremykin et al. 2003, 2005; Ané et al. 2004;
Soltis and Soltis 2004; Stefanovic et al. 2004). Thoughneither
of the common scaling nor taxa-specific scaling methods
recovers the exact reference topology in figure 8 (Ané et al.
2004; Soltis et al. 2005), the relative positions of the taxa
within the angiosperm clade more or less agrees with the
reference tree, with the exception of A. americanus which
is misplaced with the eudicots in the common scaling and
taxa-specific scaling trees. Analysis on a subset of 19 of these
genes, which excluded atpI, clpP,psaB,psaC, rbcL, and rpoC1,
returned the incorrect tree withmonocots placed as basal in
the angiosperm clade. The relative MinCV distances within

FIG. 15. Boxplots of 1,000 sample distances obtained from block size 14 permutation samples (left) and block size 1 permutation samples (right)
for three randomly selected taxa pairs from the nematode data set. Horizontal line across the x axis corresponds to the common scaling MinCV
distance for real data.
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the angiosperm clade appear to be greatly changed by the
inclusion of these six genes indicating that these genes are
given considerable weight. The additional six genes appear
to be highly influential in determining the topology within
the angiosperm clade in the combined gene tree.

The trees computed fromSeq-Gen–simulated sequences
indicate that the covariance-based methods do a good job
of capturing phylogenetic signal. When branch lengths are
short, both sequence and structure similarity are preserved
in the simulated sequences, resulting in high recovery of the
input tree by the estimated trees.When sequence and struc-
tural similarity is reduced, the recovery rate drops accord-
ingly. The block bootstrap permutations preserve all of the
sequence similarity of the original sequences but only some
of the structural similarity and hence have a lower recovery
rate than the data generated with Seq-Gen under simula-
tion schemes S1. For a data set such as the nematode data
where the true tree is unknown, the bootstrap permuta-
tion samplesmay bemore informative than simulations be-
cause they require no assumptions with regards to the true
tree topology. Bootstrap permutation samples based on the
common scaling strongly support the ecdysozoa hypothesis,
whereas those based on the taxa-specific scaling showmod-
erate to high support for the coelomata hypothesis.

The spectral covariance trees are based on structural
similarity between proteins. However, it has been shown
that structural similarity and sequence similarity are highly
correlated (Chothia and Lesk 1986; Wood and Pearson
1999), and that orthologous proteins have greater structural
similarity than paralogous proteins for the same level of se-
quence similarity (Peterson et al. 2009). For this reason, the
estimated trees reflect both the structural and the sequence
similarity between taxa, which is present within the proteins
used for the analysis (Collins et al. 2006). The fact that spec-
tral covariance-basedmethods can recover the major struc-
ture of the tree implies that major structural and sequential
differences can be captured by this method. The total co-
variance used here as a summarymeasure of the spectral co-
variance is only onepossiblemeasure. It is important tonote
that by summing over all frequencies some structural infor-
mation is being averaged out. We are currently considering
other possible summary measures which take into account
the frequencies at which the highest peaks occur.

At the moment, the impact of our method on sys-
tematic biases, such as variable evolutionary rates across
genes, taxa, or individual sites within a sequence, is unclear.
However, since the spectral covariance is based on struc-
ture information rather than substitutions at the sequence
level, ourmethod should be less sensitive to systematic error
than sequence-basedmethods. The common scaling covari-
ance was able to separate the honeybee and roundworm,
which sequence-basedmethods tend to group together due
to long branch attraction (Foster and Hickey 1999). Further
simulation studies to rigorously test how our method re-
sponds under these conditions are required.

The spectral covariance method does not assume site
independence and does not require specification of an evo-
lutionary model. The MinCV is an effective method for

combining information from multiple genes to obtain tree
estimates, and the idea can be generally applied with other
distance or dissimilarity measures to combine information
frommultiple genes.

At the moment, the method is limited to include only
proteins common to all taxa. An extension of this method
to deal with missing data and allow for the inclusion of a
larger number of protein sequences will be developed. One
way to do this is by modeling the pairwise distances com-
puted from the available pairs of genes and using missing
data imputation methods based on the statistical models.
These methods are currently under investigation.

Supplementary Material
Supplementary tables A–C are available at Molecular Biol-
ogy and Evolution online (http://www.mbe.oxfordjournals.
org/).
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