Math 2112 Solutions
Assignment 4

2.2.19 \(\exists x \in \mathbb{R} \text{ such that } \forall y \in \mathbb{R}^-, x > y. \)

(a) \(\forall x \in \mathbb{R} \exists y \in \mathbb{R}^- \text{ such that } x > y. \)
(b) Both the original statement and the new statement are true.

2.2.25 If the square of an integer is even, then the integer is even.

Contrapositive: If an integer is odd, then the square of the integer is odd.
Converse: If an integer is even, then the square of the integer is even.
Inverse: If the square of an integer is odd, then the integer is odd.

4.2.11 \(\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \cdots + \frac{1}{n(n+1)} = \frac{n}{n+1}, \text{ for all integers } n \geq 1. \)

Proof: By mathematical induction.
Base Case: Let \(n = 1. \) Then \(LHS = \frac{1}{1 \cdot 2} = \frac{1}{2} \) and \(RHS = \frac{1}{2}. \) Therefore \(LHS = RHS. \)

Inductive Step: Let \(k \geq 1. \) Assume that \(\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \cdots + \frac{1}{k(k+1)} = \frac{k}{k+1}. \)
Consider
\[
\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \cdots + \frac{1}{k(k+1)} + \frac{1}{(k+1)(k+2)}
\]

By our inductive hypothesis, we know that
\[
\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \cdots + \frac{1}{k(k+1)} + \frac{1}{(k+1)(k+2)} = \frac{k}{k+1} + \frac{1}{(k+1)(k+2)}
\]
\[
= \frac{k(k+2) + 1}{(k+1)(k+2)}
\]
\[
= \frac{k^2 + 2k + 1}{(k+1)(k+2)}
\]
\[
= \frac{(k+1)(k+1)}{(k+1)(k+2)}
\]
\[
= \frac{k+1}{k+2}.
\]

But then \(P(k+1) \) is true.

Therefore \(\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \cdots + \frac{1}{n(n+1)} = \frac{n}{n+1}, \text{ for all integers } n \geq 1 \) by mathematical induction.
4.2.16 \(\prod_{i=0}^{n} \left(\frac{1}{2i+1} \cdot \frac{1}{2i+2} \right) = \frac{1}{(2n+2)!} \), for all integers \(n \geq 0 \).

Proof: Proof by mathematical induction.

Base Case: Let \(n = 0 \). Then \(LHS = \frac{1}{1} \cdot \frac{1}{2} = \frac{1}{2} \) and \(RHS = \frac{1}{2} = \frac{1}{2} \). Therefore \(LHS = RHS \).

Inductive Step: let \(k \geq 0 \). Assume that \(\prod_{i=0}^{k} \left(\frac{1}{2i+1} \cdot \frac{1}{2i+2} \right) = \frac{1}{(2k+2)!} \). Consider \(\prod_{i=0}^{k+1} \left(\frac{1}{2i+1} \cdot \frac{1}{2i+2} \right) \). By the inductive hypothesis, we know that

\[
\prod_{i=0}^{k+1} \left(\frac{1}{2i+1} \cdot \frac{1}{2i+2} \right) = \frac{1}{(2k+2)!} \cdot \left(\frac{1}{2k+3} \cdot \frac{1}{2k+4} \right)
\]

\[
= \frac{1}{(2k+4)!}.
\]

But then \(P(k+1) \) is true.

Therefore \(\prod_{i=0}^{n} \left(\frac{1}{2i+1} \cdot \frac{1}{2i+2} \right) = \frac{1}{(2n+2)!} \) for all \(n \geq 0 \).

4.3.12 For any integer \(n \geq 1 \), \(7^n - 2^n \) is divisible by 5.

Proof: Proof by mathematical induction.

Base Case: Let \(n = 1 \). Then \(7^1 - 2^1 = 5 \), which is indeed divisible by 5.

Inductive Step: Let \(k \geq 1 \). Assume that \(7^k - 2^k \) is divisible by 5. Consider

\[
7^{k+1} - 2^{k+1} = 7 \cdot 7^k - 2 \cdot 2^k
\]

\[
= 7^k + 7^k + 5 \cdot 7^k - 2^k - 2^k
\]

\[
= 7^k - 2^k + 7^k - 2^k + 5 \cdot 7^k.
\]

Note that the first two terms are divisible by 5 by our inductive hypothesis, and the last term is divisible by 5 by the definition of divisibility. Therefore \(7^{k+1} - 2^{k+1} \) is divisible by 5.

Therefore, \(7^n - 2^n \) is divisible by 5 for all integers \(n \geq 1 \).

4.3.30 Use mathematical induction to show that in any round-robin tournament involving \(n \) teams, where \(n \geq 2 \), it is possible to label the teams \(T_1, T_2, \ldots, T_n \) so the \(T_i \) beats \(T_{i+1} \) for all \(i = 1, 2, \ldots, n - 1 \).

Proof: Proof by mathematical induction.

Base Case: Let \(n = 2 \). Then there was only one game played. Label the winner
as T_1 and the loser as T_2.

Inductive Step: Let $k \geq 2$. Assume that for all tournaments with k teams, there is a labelling as described above. Consider a tournament on $k + 1$ teams. When we remove one team, say team A, we have a tournament on k teams. Thus, by our inductive hypothesis, there is a labelling T_1, T_2, \ldots, T_k as above. Either A beats team T_1, A loses to the first m teams (where $1 \leq m \leq k - 1$) and beats the $(m + 1)$st team, or A loses to all the other teams.

In the first case, A, T_1, T_2, \ldots, T_k is a desired ordering, so we relabel our teams so that A becomes T'_1, T_1 becomes T'_2, and so on.

In the second case, $T_1, T_2, \ldots, T_m, A, T_{m+1}, \ldots, T_k$ is a desired ordering (since A lost to T_m but beat T_{m+1}), and so we relabel accordingly.

In the third case, T_1, T_2, \ldots, T_k, A is a desired ordering (since A lost to everyone, in particular they lost to T_k), and so we relabel accordingly.

In all cases, we have found the desired labelling. Thus the result holds by mathematical induction.

4.4.8 Suppose that h_0, h_1, h_2, \ldots is a sequence defined as follows:

$$h_0 = 1, h_1 = 2, h_2 = 3,$$

$$h_k = h_{k-1} + h_{k-2} + h_{k-3}$$

for all integers $k \geq 3$.

a. Prove that $h_n \leq 3^n$ for all integers $n \geq 0$.

b. Suppose that s is any real number such that $s^3 \geq s^2 + s + 1$. (This implies that $s > 1.83$.) Prove that $h_n \leq s^n$ for all $n \geq 2$.

a. Proof: Proof by strong mathematical induction.

Base Cases: Note that $h_0 \leq 3^0, h_1 \leq 3^1, h_2 \leq 3^2$.

Inductive Step: Let $k > 2$. Assume that $h_i \leq 3^i$ for all integers i with $0 \leq i < k$. Consider h_k. By our inductive hypothesis, we know that

$$h_k = h_{k-1} + h_{k-2} + h_{k-3}$$

$$\leq 3^{k-1} + 3^{k-2} + 3^{k-3}$$

$$= 3^2 \cdot 3^{k-3} + 3 \cdot 3^{k-3} + 3^{k-3}$$

$$= (3^2 + 3 + 1)3^{k-3}$$

$$\leq 3^3 \cdot 3^{k-3}$$

$$= 3^k$$
Therefore, $h_k \leq 3^k$.

Thus the result holds by strong mathematical induction.

b. Proof: Proof by strong mathematical induction.

Base Cases: Note that since $s > 1.83$, $h_2 \leq s^2, h_3 \leq s^3, h_4 \leq s^4$.

Inductive Step: Let $k > 4$. Assume that $h_i \leq s^i$ for all integers i with $2 \leq i < k$. Consider h_k. By our inductive hypothesis, we know that

\[
h_k = h_{k-1} + h_{k-2} + h_{k-3} \\
\leq s^{k-1} + s^{k-2} + s^{k-3} \\
= s^2 \cdot s^{k-3} + s \cdot s^{k-3} + s^{k-3} \\
= (s^2 + s + 1)s^{k-3} \\
\leq s^3 \cdot s^{k-3} \\
= s^k
\]

Therefore, $h_k \leq s^k$.

Thus the result holds by strong mathematical induction.