
Math 2112 Solutions
Assignment 7

7.6.23 Prove the union of two countable sets is countable.

Proof: Let A and B be countable sets. We will consider four cases.

Suppose both A and B are finite. Then A ∪ B is finite, and hence count-
able.

Suppose one of A and B is finite and the other is countably infinite. Assume
without loss of generality that A is finite. Since B is countably infinite, there
exists a function f : B 7→ Z

+ which is a one-to-one correspondence. Say that
f(bi) = i, for bi ∈ B and i ∈ Z

+. Let C = A − B. Thus A ∪ B = B ∪ C. If
C = ∅, then A ∪ B = B which is countably infinite. Thus assume that C 6= ∅.
Suppose that C = {c1, c2, ...cn}. Let f ′ : B ∪ C 7→ Z

+ be defined as follows:
f ′(cj) = j and f ′(bi) = n + i. Clearly, f ′ is one-to-one and onto. Thus B ∪ C
is countable. But B ∪ C = A ∪B, so A ∪B is countable.

Suppose that both A and B are infinite and that A ∩ B = ∅. Given that A
and B are both countable, there exists functions f : Z

+ 7→ A and g : Z
+ 7→ B

that are one-to-one correspondences. Consider the function h : Z
+ 7→ A ∪ B

where h(n) = f(n/2) if n is even and h(n) = g((n + 1)/2) if n is odd. Since
both f and g are one-to-one, then so is h. Similarly, since f is onto, every
element in A is covered and since g is onto, every element in B is coverd, so
h is onto. Therefore, h is a one-to-one correspondence, and hence h is countable.

Suppose that both A and B are infinite and that A ∩ B 6= ∅. Let C = B − A.
Then A∪B = A∪C and A∩C = ∅. If C is countably infinite, then A∪B = A∪C
is countable by the previous case. If C is finite, then A ∪B A ∪ C is countable
byt the second case. In any case, A ∪B is countable.

7.6.24 Use the result of 7.6.23 to prove that the set of all irrational
numbers is uncountable.

Proof: Assume by way of contradiction that the set of all irrational numbers
is countable. We know that the rationals are countable. Since the real numbers
are the union of the irrationals and rationals, by 7.6.23, the real numbers must
be countable. This contradicts a theorem discussed in class. Therefore the ir-
rationals are uncountable.

10.2.13 Determine whether the following relation is reflexive, sym-
metric or transitive:
C is the circle relation on the set of real numbers, namely,

x, y ∈ R, xCy ⇔ x2 + y2 = 1.
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Proof: Not Reflexive: For example, 1 6 C1, since 1 + 1 = 2.

Symmetric: Suppose xCy. Then x2 + y2 = 1. But then y2 + x2 = 1, so
yCx.

Not Transitive: For example, 1C0 and 0C1 but 1 6 C1.

10.2.41 let R be a binary relation on a set A and let Rt be the tran-
sitive closure of R. Prove that for all x and y in A, xRty if, and
only if, there is a sequence of elements of A, x1, x2, ..., xn, such that
x = x1, x1Rx2, x2Rx3, ..., xn−1Rxn, and xn = y.

Proof: Suppose that there is a sequence of elements of A, x1, x2, ..., xn, such
that x = x1, x1Rx2, x2Rx3, ..., xn−1Rxn, and xn = y. Since x1Rx2 and x2Rx3

then x1R
tx3. Since x1R

tx3 and x3Rx4 then x1R
tx4. Continuing onward, we

can see that xRty.

Suppose that x, y ∈ A and xRty. If xRy then we are done. Thus assume
that x 6 Ry. Assume by way of contradiction that there does no exist a sequence
of elements of A, x1, x2, ..., xn such that x = x1, x1Rx2, x2Rx3, ..., xn−1Rxn,
and xn = y. Let S = Rt−{(x, y)}. Then S is a transitive relation that contains
R and is a proper subset of Rt. This contradicts the fact that Rt is the smallest
transitive relation containing R. Hense, the supposition is false, and the result
follows.

10.3.16 Describe the distinct equivalence classes of:
F is the relation defined on Z as follows:
for all m, n ∈ Z, mFn⇔ 4|(m− n).

Proof: The distinct equivalence classes are: {...−8,−4, 0, 4, 8, ...}, {...−7,−3, 1, 5, 9, ...},
{...− 6,−2, 2, 6, 10, ...} and {...− 5,−1, 3, 7, 11, ...}.

10.3.21 Describe the distinct equivalence classes of:
D is the relation defined on Z as follows:
for all m, n ∈ Z, mDn⇔ 3|(m2 − n2).

Proof: As discussed in class, there are two distinct equivalence classes of D,
namely the equivalence class consisting of all numbers divisible by three, and
the equivalence class consisting of all numbers not divisible by three. This
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is true because if z = 3k, then z2 = 9k2 = 3(3k2), if z = 3k + 1, then
z2 = (3k + 1)2 = 9k2 + 6k + 1 = 3(3k2 + 2k) + 1, and finally if z = 3k + 2,
thenz2 = (3k + 2)2 = 9k2 + 12k + 4 = 3(3k2 + 6k + 1) + 1.

10.3.33 Let R be the binary relation defined in Example 10.3.10 (the
equivalence relation of rational numbers).
a. Prove that R is reflexive.
b. Prove that R is symmetric.
c. List four distinct elements in [(1, 3)].
d. List four distinct elements in [(2, 5)].

a. Proof: Let (a, b) ∈ A. Then (a, b)R(a, b) since ab = ba by commutativity of
the integers.

b. Proof: Suppose that (a, b)R(c, d). Therefore ad = bc. But then cb = da, so
(c, d)R(a, b).

c. Four distinct elements of [(1, 3)] are (1, 3), (−1,−3), (2, 6), and (−2,−6)
(there are, of course, many others).

d. Four distinct elements of [(2, 5)] are (2, 5), (−2,−5), (4, 10), and (−4,−10).
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