
Epidemic Models - Hysteresis

1 SIR models

In these models, we divide a population into compartments. We will consider
the following subsets of a given population of N individuals

• S - the susceptible population.

• I - the infected population.

• R - the recovered population (assumed to have immunity).

We will use a law of mass action type of rate to model the transfer of infection
to the susceptible group of the population

Ṡ = bN︸︷︷︸
birth

− bS︸︷︷︸
death

− β
SI

N︸︷︷︸
infection

, (1)

İ = β
SI

N︸︷︷︸
infection

− bI︸︷︷︸
death

− νI︸︷︷︸
recovery

, (2)

Ṙ = νI︸︷︷︸
recovery

− bR︸︷︷︸
death

. (3)

Here we have assumed the birth rate and the death rate are the same b. The
total population is then constant. This is clear if we let N = S + I + R then
Ṅ = 0. We may interpret the parameters in the model as follows:

• b - birth and death rate.

• N - total population size.

• β - per ca pita infection rate.

• nu - recovery rate.

To determine if there is an epidemic, we look at the stability of the disease
free equilibrium (DFE) (S, I,R) = (N, 0, 0). The Jacobian of the system is given
by

J =

 −b− β I
N −β S

N 0
β I
N β S

N − b− ν 0
0 ν −b

 .

If we sub in the DFE we have,

J =

 −b −β 0
0 β − b− ν 0
0 ν −b

 .

1



We can find the eigenvalues of this matrix quite easily. They are given by

λ1 = −b , (4)

λ2 = β − b− ν , (5)

λ3 = −b (6)

Since λ1 and λ3 are always negative, the stability of the DFE is determined by
λ2. If we define R0 = β

b+ν , then we have

λ2 = (b+ ν)(R0 − 1) .

So if R0 < 1, the DFE is stable and if R0 > 1 the DFE is unstable. The constant
R0 is call the basic reproduction number and it represents the expected number
of infected individuals resulting from a single infected case.

2 Model with hysteresis

We will now consider a slightly more complex model in which the contact rate
depends on the number of infected individuals. As well we will allow for the
loss of immunity in the recovered class. The model is then,

Ṡ = bN︸︷︷︸
birth

− bS︸︷︷︸
death

−β(1 + µI)
SI

N︸ ︷︷ ︸
infection

+ γR︸︷︷︸
loss of immunity

, (7)

İ = β(1 + µI)
SI

N︸ ︷︷ ︸
infection

− bI︸︷︷︸
death

− νI︸︷︷︸
recovery

, (8)

Ṙ = νI︸︷︷︸
recovery

− bR︸︷︷︸
death

− γR︸︷︷︸
loss of immunity

. (9)

The per capita infection rate here is given by β(1 + µI) and is a function of
the number of infected. Details of this model may be found in the paper ”Epi-
demic Solutions and Endemic Catastrophies” P. van den Driessche and James
Watmough Proceedings of an International Workshop on Dynamical Systems
and their Applications in Biology Fields Institute Communications, August 2-6,
2001, pp. 247-258.

First we define the constants

R0 =
β

b+ ν
, ε =

ν

b+ γ
, η =

ν

b+ ν
, χ =

µN

1 + ε
.

We rescale the system

x =
1 + ε

N
I , y = (1 + ε)

R

N
, t′ = (ν + b)t ,
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and use S = N − I −R to get the reduced system. I will go through the details
to find the equation for x. We will let x′ be the derivative with respect to t′.
So we have,

x′ =
dx

dt

dt

dt′
,

=
1

ν + b

dx

dt
,

=
1

ν + b

1 + ε

N

dI

dt
,

=
1

ν + b

1 + ε

N

(
β

(
1 + µ

(
N

1 + ε
x

))(
N − N

1 + ε
(x+ y)

)
1

N
− N

1 + ε
(b+ ν)x

)
,

So after some cancelling we have,

x′ = R0(1 + χx)

(
1 − x+ y

1 + ε

)
x− x ,

y′ = η
(
x− y

ε

)
.

For this system we have a DFE and R0 is the basic reproduction number. We
now examine the endemic equilibrium. For the endemic equilibrium we require
y = εx. Subbing this into the first equation, we find that

R0(1 + χx)(1 − x) = 1 ,

or
R0f(x) = 1 ,

where
f(x) = (1 + χx)(1 − x)

. Solving the quadratic gives

x± =
χ− 1

2χ
± 1

2χ

√
(χ+ 1)2 − 4χ

R0
.

So if (χ+ 1)2 > 4χ
R0

, then we have 2 addition endemic equilibria. To determine
the stability of these equilibria we sub them into the Jacobian

J =

(
R0x

±
(
χ(1 − x±) − 1+χx±

1+ε

)
−R0x

± 1+χx±

1+ε

η −η
ε

)
.

We note that

Det(J) = −R0ηx
± f
′(x±)

ε
,

where f is defined above. The determinant will be less than zero on x− and
positive on x+. So as long as the trace is negative, the upper branch of equilibria
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will be stable and the lower will be unstable. To demonstrate what is occurring
we set χ = 2. The two equilibria are then

x± =
1

4

(
1 ±

√
9 − 8

R0

)
.

So as long as R0 > 8
9 , we will have three distinct equilibria. Note that at

R0 = 1, x− = 0. So for R0 > 1, we can ignore x− as it will be less than zero
and unphysical.
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In the above graph, we plot the various equilibria and their stability for a range
of R0 values. The red lines represent stable equilibria and the blue unstable.
There are several key points to consider.

1. For 8
9 < R0 < 1, we have a stable endemic equilibrium as well as a stable

DFE. So even though R0 < 1, we can have an outbreak if there is enough
infected individuals at time t = 0. Basically if I(0) < N

1+εx
− the disease

will die out in this case. However if I(0) > N
1+εx

−, then the infected class

will grow to x+. Note that we must scale back to the original variables.

2. In most epidemic models, as R0 passes through 1, a small endemic infected
class forms. In this case, as R0 passes through 1, the infected class quickly
jumps to N

1+εx
+.

3. Once we are on the x+ branch of equilibria, bringing R0 back below 1 will
not be enough to return us to the DFE. In this case we must reduce R0

below 8
9 .

This phenomenon is referred to as hysteresis or catastrophe theory.
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