
Math 2400 - Numerical Analysis
Homework #1 Solutions

1. (a) Using the Matlab command line interface, create a 2 × 2 matrix named A with the
following entries:

A =

(
2 4
7 9

)
.

(b) Type in the Matlab command A.^2.

(c) Type in the Matlab command A^2.

(d) What is the purpose of the dot.
Here is my Matlab session:

octave:2> A=[[2 4];[7 9]]

A =

2 4

7 9

octave:3> A.^2

ans =

4 16

49 81

octave:4> A^2

ans =

32 44

77 109

octave:5> quit

What is the .? Matlab is designed to work with matrices, so most operations will work in
matrix arithmetic. Thus A^2 is the matrix A multiplied by itself using matrix multiplication.
If you wish to perform an operation on each component, you must precede the operation with
a dot. Note: we could also have used the commands A.*A and A*A and had the same results.

2. (a) Using the Matlab command line interface, create a vector ~v with the following structure.
The first component of ~v is v0 = 0. The ith component of ~v is given by vi = 0.1i. ~v will
have 31 components. There are several ways to do this, you may want to look at the
linspace command.

(b) Create a vector ~w with the property that the ith component of ~w is given by v3
i .

(c) Use ~v and ~w to plot the function, y = x3 (look up the plot command in the help index).
Here is the Matlab session I used to answer the above questions

octave:2> v=linspace(0,3,31)

1

v =

Columns 1 through 11:

0.00000 0.10000 0.20000 0.30000 0.40000 0.50000 0.60000 0.70000 0.80000 0.90000 1.00000

Columns 12 through 22:

1.10000 1.20000 1.30000 1.40000 1.50000 1.60000 1.70000 1.80000 1.90000 2.00000 2.10000

Columns 23 through 31:

2.20000 2.30000 2.40000 2.50000 2.60000 2.70000 2.80000 2.90000 3.00000

octave:3> w=v.^3

w =

Columns 1 through 10:

0.00000 0.00100 0.00800 0.02700 0.06400 0.12500 0.21600 0.34300 0.51200 0.72900

Columns 11 through 20:

1.00000 1.33100 1.72800 2.19700 2.74400 3.37500 4.09600 4.91300 5.83200 6.85900

Columns 21 through 30:

8.00000 9.26100 10.64800 12.16700 13.82400 15.62500 17.57600 19.68300 21.95200 24.38900

Column 31:

27.00000

octave:4> plot(v,w)

octave:5> gset output "hw1q2c.eps"

octave:6> gset terminal postscript eps

octave:7> plot(v,w)

octave:8> quit

In the session I used the .^3 to cube each element of the vector v. This idea can be used
to quickly plot any polynomial.
Here is the graph

2

 0

 5

 10

 15

 20

 25

 30

 0 0.5 1 1.5 2 2.5 3

line 1

 0

 5

 10

 15

 20

 25

 30

 0 0.5 1 1.5 2 2.5 3

line 1

 0

 5

 10

 15

 20

 25

 30

 0 0.5 1 1.5 2 2.5 3

line 1

 0

 5

 10

 15

 20

 25

 30

 0 0.5 1 1.5 2 2.5 3

line 1

(d) Try typing the command z=sin(v).

(e) Plot (very) approximately half of one period of the function y = sin(x).
Here are the Matlab commands and output for question parts (d) and (e)

octave:2> v=linspace(0,3,31)

v =

Columns 1 through 11:

0.00000 0.10000 0.20000 0.30000 0.40000 0.50000 0.60000 0.70000 0.80000 0.90000 1.00000

Columns 12 through 22:

1.10000 1.20000 1.30000 1.40000 1.50000 1.60000 1.70000 1.80000 1.90000 2.00000 2.10000

Columns 23 through 31:

2.20000 2.30000 2.40000 2.50000 2.60000 2.70000 2.80000 2.90000 3.00000

octave:3> z=sin(v)

z =

Columns 1 through 11:

0.00000 0.09983 0.19867 0.29552 0.38942 0.47943 0.56464 0.64422 0.71736 0.78333 0.84147

Columns 12 through 22:

3

0.89121 0.93204 0.96356 0.98545 0.99749 0.99957 0.99166 0.97385 0.94630 0.90930 0.86321

Columns 23 through 31:

0.80850 0.74571 0.67546 0.59847 0.51550 0.42738 0.33499 0.23925 0.14112

octave:4> plot(v,z)

octave:5> gset output "hw1q2e.eps"

octave:6> gset terminal x11

octave:7> plot(v,z)

octave:8> quit

You don’t always have to use the dot notation. Must functions will accept a vector as
input. This makes plotting very easy in Matlab. The linspace command is a fast way to
generate vectors with equally spaced components. Also very useful for graphing. Note:
Instead of using linspace, you can also enter the command 0:.1:3 and have the same
results. It just depends on whether you prefer picking the number of components or the
difference between successive components.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.5 1 1.5 2 2.5 3

line 1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.5 1 1.5 2 2.5 3

line 1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.5 1 1.5 2 2.5 3

line 1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.5 1 1.5 2 2.5 3

line 1

3. Explain why the MATLAB command sin(pi) doesn’t return 0. Explain the significance of
the value returned by MATLAB (consider the effect on significant digits)
Matlab evaluates sin(pi) as 1.2246e-16. The exact answer is of course zero. The error
in this calculation will is caused by the representation of π as a floating point number and
truncation error used to evaluate the sine function.
The absolute error is very small (1.2246 × 10−16), but the relative error is infinite. The
importance of an infinite relative error is that any further calculations will have no significant
digits. If in further calculations we multiplied sin(π) by a large number, instead of getting

4

0, we would have some nonzero value. None of the digits would then be correct and as this
calculation proceeds the situation could continue to worsen.

4. Use 4 digit rounding with the usual formula to find the roots of the following quadratic

x2 + 62.1x+ 1 = 0 .

If the exact answers are taken to be

x1 = −0.01610723 x2 = −62.08390

find the relative error of the approximation above using 4 digit rounding. Explain any unusual
results.
Here is a table of all my rounded calculations:

x1 calculation x2 calculation

b2 3856 3856
4ac 4 4

b2 − 4ac 3852 3852√
b2 − 4ac 62.06 62.06

−b±
√
b2 − 4ac -0.04 -124.2

x1,2 -0.02 -62.1

So the relative error for x1 is,

Relative Error =

∣∣∣∣
−0.02 + 0.01610723

0.01610723

∣∣∣∣ ∼ 24%

The relative error for x2 is,

Relative Error =

∣∣∣∣
−62.1 + 62.08390

62.08390

∣∣∣∣ ∼ 0.02%

The reason one of the roots is much less accurate is that division of nearly equal numbers
always reduced precision. In this case it is exaggerated by the fact that we are only using 4
digits.
One way to avoid this problem is to use the fact that

x1x2 =
c

a

Since there is no problem finding x2, we can then find

x1 =
1

x2

∼ −0.01610

to 4 digit rounding. The relative error for this calculation is ∼ 0.04%

5. Review Taylor’s Theorem. Construct the third Taylor polynomial about x0 = 1 approximating
ln(x), the natural logarithm of x. Use this polynomial to approximate ln(1.1). Finally, using
the truncation error (or remainder term) for this Taylor polynomial, bound the error of you
approximation to ln(1.1). How many digits of your approximation are correct.

5

Using the notation of the text book,

P3(x) = ln(1) + (ln(x)′)|x=1(x− 1) +
(ln(x))′′|x=1

2!
(x− 1)2 +

(ln(x))′′′|x=1

3!
(x− 1)3 +Rn ,

where

Rn =
(ln(x))′′′′|x=ζ

4!
(x− 1)4 , 1 ≤ ζ ≤ 1.1 .

Evaluating all the derivatives gives us,

P3(x) = ln(1) +
1

1
(x− 1)− 1

2
(x− 1)2 +

2

6
(x− 1)3 +R3 ,

R3 =
−6

24ζ4
(x− 1)4 .

To evaluate ln(1.1),

P3(1.1) = ln(1) +
1

1
(.1)− 1

2
(.1)2 +

1

3
(.1)3 ,

≈ 0.0953333333333333 .

Note: ln(1.1) ≈ 0.0953101798043249, so we have 3 correct digits.
For a bound on the truncation error, we know that |R3| will be largest when ζ = 1, so

|R3| ≤
1

4
(.1)4 ≈ 2.5× 10−5 .

The actual error is within this bounds.

6

