Numerical Solutions of Boundary Value Problems

In these note we will consider the solution to boundary value problems of the form

$$
\begin{align*}
y^{\prime \prime} & =f\left(x, y, y^{\prime}\right), \quad a<x<b, \tag{1}\\
y(a) & =A \tag{2}\\
y(b) & =B \tag{3}
\end{align*}
$$

We will consider two common methods, shooting and finite differences. In the shooting method, we consider the boundary value problem as an initial value problem and try to determine the value $y^{\prime}(a)$ which results in $y(b)=B$. Finite differences converts the continuous problem to a discrete problem using approximations of the derivative. As in class I will apply these methods to the problem

$$
y^{\prime \prime}=-\frac{\left(y^{\prime}\right)^{2}}{y}, \quad y(0)=1, \quad y(1)=2
$$

The exact solution is given by $y=\sqrt{3 x+1}$.

1 Shooting - Secant Method

For the shooting method, we consider the problem

$$
\begin{align*}
y^{\prime \prime} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
y(a) & =A \tag{5}\\
y^{\prime}(a) & =t \tag{6}
\end{align*}
$$

We let

$$
m(t)=f(b ; t)-B
$$

where $f(b ; t)$ is the solution to (4) using the value t. We wish to find a zero of $m(t)$ to solve the boundary value problem. In this case we use the secant method to locate the zero. Recall, to solve $f(x)=0$ using the secant method we make successive approximations using the iteration

$$
x_{n+1}=x_{n}-\frac{x_{n}-x_{n-1}}{f\left(x_{n}\right)-f\left(x_{n-1}\right)} f\left(x_{n}\right) .
$$

We need two guess to start the process, then we just proceed until the iterations converge. Here is the code I used to approximate the solution to (1) using the shooting secant method:

```
function [x,y]=bvpsec(t1,t2)
[x1,y1]=ode45(@odes, [0, 1], [1,t1]);
[x2,y2]=ode45(@odes, [0, 1], [1, t2]);
i=1;
m1=y1(end,1)-2;
m2=y2(end,1)-2;
while(abs(t2-t1)>0.000001)
    tmp=t2
    t2=t1-(t1-t2)/(m1-m2)*m1;
    t1=tmp;
    [x1,y1]=ode45(@odes,[0,1],[1,t1]);
    [x2,y2]=ode45(@odes,[0,1],[1,t2]);
    m1=y1(end,1)-2;
    m2=y2(end,1)-2;
    i=i+1;
end
i
x=x2;
y=y2;
```

end
function $y p=o d e s(t, y)$
$y p=z e r o s(2,1)$;
$y p(1)=y(2)$;
$y p(2)=-y(2) \wedge 2 / y(1)$;
end
If we run the code with input parameters 1 and 2 , it takes 6 iterations to get the solution shown in figure 1

Figure 1: Approximation to the solution of (1) using the shooting method in combination with the secant method. The plot includes $y(x)$ as well as $y^{\prime}(x)$.

2 Shooting Method - Newton's Method

Newton's root finding method is much faster and can produce more accurate results then the secant method. The iteration used to find a solution to $f(x)=0$ is given by

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

However to apply this method to find a root of $m(t)$, we must know $m^{\prime}(t)$. Here $m(t)$ is defined in terms of the solution to differential equation evaluated at a point b. In general, we can't solve the differential equation or we wouldn't need the numerical approximation. So we must find a method of approximating $m^{\prime}(t)$.

We first note that

$$
m(t)=f(b ; t)-B
$$

so that

$$
m^{\prime}(t)=\left.\frac{\partial f(x ; t)}{\partial t}\right|_{x=b}
$$

Now we will consider f as a function of the three variables x, y and y^{\prime}, for the moment ignoring the relationship between y and y^{\prime}. We can then differentiate the following relation by t

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

to get

$$
\frac{\partial y^{\prime \prime}}{\partial t}=\frac{\partial f}{\partial y} \frac{\partial y}{\partial t}+\frac{\partial f}{\partial y^{\prime}} \frac{\partial y^{\prime}}{\partial t}
$$

We can let $z(x, t)=\frac{\partial}{\partial t} f(x, t)$. Now z satisfies the boundary value problem

$$
z^{\prime \prime}=\frac{\partial f}{\partial y} z+\frac{\partial f}{\partial y^{\prime}} z^{\prime}, \quad z(0)=0, \quad z^{\prime}(0)=1
$$

Now $m^{\prime}(t)=z(b)$. So if we wish to apply this method to our sample problem (1), we must solve the system

$$
\begin{aligned}
y^{\prime} & =u, \\
u^{\prime} & =-\frac{u^{2}}{y}, \\
z^{\prime} & =v, \\
v^{\prime} & =\frac{u^{2}}{y^{2}} v-2 \frac{u}{y} v, \\
y(0) & =1, \\
u(0) & =t, \\
z(0) & =0, \\
v(0) & =1 .
\end{aligned}
$$

Then we can approximate $m^{\prime}(t)$ by $z(1)$ and use Newton's formula to update the solution. The code is given below:

```
function [x,y]=bvpnewt(t1)
[x,y]=ode45(@odes, [0,1],[1,t1, 0,1]);
i=1;
m=y(end,1)-2;
t2=t1-m/y(end,3);
while(abs(t2-t1)>0.000001)
    t1=t2;
    [x,y]=ode45(@odes, [0,1],[1,t1,0,1]);
    m=y(end,1)-2;
    t2=t1-m/y(end,3);
    i=i+1;
end
y=y(:,1:2);
i
end
function yp=odes(t,y)
    yp=zeros(4,1);
    yp(1)=y(2);
    yp(2)=-y(2)^2/y(1);
    yp(3)=y(4);
    yp(4)=y(2)^2/y(1)^2*y(3)-2*y(2)/y(1)*y(4);
end
```

Running this code with an initial $t=1$ takes 4 iterations to get to the same accuracy as the secant method. This method must solve a larger system, so each iteration is more work. However fewer iterations are required. The output is almost identical to the shooting method, so there is no need provide a graph.

3 Finite Difference Method

For the finite difference method, we pick $N+1$ discrete points in the interval $[a, b]$ by

$$
x_{i}=a+i \Delta x, \quad i=0 \ldots N, \quad \Delta x=\frac{b-a}{N} .
$$

and we let y_{i} be our approximation of $y\left(x_{i}\right)$. In the solution to the heat equation notes we show that

$$
\begin{align*}
y^{\prime \prime}\left(x_{i}\right) & \sim \frac{y_{i+1}-2 y_{i}+y_{i-1}}{\Delta x^{2}}, \tag{7}\\
y^{\prime}\left(x_{i}\right) & \sim \frac{y_{i+1}-y_{i-1}}{2 \Delta x} . \tag{8}
\end{align*}
$$

Using the boundary conditions $y_{0}=A$ and $y_{N}=B$ together with (7), we get $N+1$ equations in $N+1$ unknowns. The equations are nonlinear and we must use Newton's method to find a solution. Recall Newton's method for systems is given by

$$
\overrightarrow{x_{n+1}}=\overrightarrow{x_{n}}-D \vec{f}\left(\overrightarrow{x_{n}}\right)^{-1} \vec{f}\left(\overrightarrow{x_{n}}\right)
$$

We can now apply the finite difference approximation to (1).

$$
\vec{F}=\left(\begin{array}{c}
y_{0}-1 \\
\vdots \\
\frac{y_{i+1}-2 y_{i}+y_{i-1}}{\Delta x^{2}}+\frac{\left(\frac{y_{i+1}-y_{i-1}}{2 \Delta x}\right)^{2}}{y_{i}} \\
\vdots \\
y_{N}-2
\end{array}\right)
$$

The nonzero entries of the Jacobian are then

$$
\begin{aligned}
J_{i, i-1} & =\frac{1}{\Delta x^{2}}\left(1-\frac{2\left(y_{i+1}-y_{i-1}\right.}{4 y_{i}}\right) \\
J_{i, i} & =-\frac{2}{\Delta x^{2}} \\
J_{i, i+1} & =\frac{1}{\Delta x^{2}}\left(1+\frac{2\left(y_{i+1}-y_{i-1}\right.}{4 y_{i}}\right)
\end{aligned}
$$

for $i=1, \ldots, N-1$. Here is the code used to implement the method:
function $[x, y]=f i n d i f f(n)$
$\mathrm{x}=$ linspace $(0,1, \mathrm{n})$;
$\mathrm{y}=\mathrm{zeros}(\mathrm{n}, 1)$;
for $i=1: n$ $y(i)=x(i)+1 ;$
end
$d y=-J(y) \backslash f(y)$;
while(norm (dy,2)>0.001)
$y=y+d y$; $d y=-J(y) \backslash f(y) ;$
end
end

```
function y1=f(y)
    n=length(y);
    h=1/n;
    y1=zeros(n,1);
    y1(1)=y(1)-1;
    for i=2:n-1
        y1(i)=(y(i-1)-2*y(i)+y(i+1))/h^2+(y(i+1)-y(i-1))^2/y(i)/4/h^2;
    end
    y1(n)=y(n)-2;
end
function J1=J(y)
    n=length(y);
    h=1/n;
    J1=zeros(n,n);
    J1 (1,1)=1;
    for i=2:n-1
```

```
        J1(i,i+1)=1/h^2*(1+(y(i+1)-y(i-1))/2/y(i));
        J1(i,i)=1/h^2*(-2-(y(i+1)-y(i-1))^2/4/y(i)^2);
        J1(i,i-1)=1/h^2*(1-(y(i+1)-y(i-1))/2/y(i));
    end
    J1(n,n)=1;
end
```

The resulting approximation is very close to those obtained with the shooting method. We will consider the error.

Figure 2: Error in shooting code. We note that the solution vector contains 13 points

Figure 3: Error for finite difference code using 50 points.

We can see that we get much better results from the shooting code with much fewer points.

4 Difficult Boundary Value Problem

We will now consider a more difficult problem

$$
\begin{equation*}
y^{\prime \prime}-y+y^{2}=0, \quad y^{\prime}(0)=0, y \rightarrow 0 \text { as } x \rightarrow \infty, \quad y>0 . \tag{9}
\end{equation*}
$$

This problem has the unique solution $y=\frac{3}{2} \operatorname{sech}^{2}(x / 2)$. Without the last restriction we also have the zero solution. So we must somehow deal with the non-uniqueness. The other problem we face is the boundary condition at infinity. The methods considered so far don't allow for a condition at ∞. If we try to enforce $y(R)=0$ for some large R, we will find the solution is very sensitive to the choice or R and we will fail. Instead we note that if the solution decays, at $x=R \gg 1, y^{2} \ll y$. So at R, the equation is approximately $y^{\prime \prime}-y=0$ and $y=C e^{-x}$. So at $x=R$, we will impose the boundary condition

$$
y^{\prime}(R)=-y(R)
$$

Here is the modified shooting method (secant version) code:

```
function [x,y]=bvpsech(t1,t2)
[x1,y1]=ode2r(@odes,[0,5],[t1,0]);
[x2,y2]=ode2r(@odes,[0,5],[t2,0]);
i=1;
m1=y1 (end,1)+y1(end,2);
m2=y2 (end,1)+y2(end,2);
while(abs(t2-t1)>0.000001)
    tmp=t2
    t2=t1-(t1-t2)/(m1-m2)*m1;
    t1=tmp;
    [x1,y1]=ode2r(@odes,[0,5],[t1, 0]);
    [x2,y2]=ode2r(@odes,[0,5], [t2,0]);
    m1=y1 (end,1)+y2(end,2);
    m2=y2(end,1)+y2(end,2);
    i=i+1;
end
i
x=x2;
y=y2;
end
function yp=odes(t,y)
    yp=zeros(2,1);
    yp(1)=y(2);
    yp(2)=y(1)-y(1)~2;
end
```

Notice the change to the initial conditions and the function $m(t)$. Now we set the initial value of y to t and set $y^{\prime}(0)=0$. We have defined $m(t)=f(5)-f^{\prime}(5)$. The choice of $x=5$ for our right endpoint is arbitrary, but if we make it too large, we will have stability problems and if we make it too small, our approximation $y^{\prime}(x)=-y(x)$ will not be valid. If we run this code with bad initial choices of t 1 and t 2 we will find it converges to the wrong solution. Namely $y \equiv 0$ or $y \equiv 1$. We need a good approximation to $y(0)$ to get the right solution. If we multiply (9) by y^{\prime} and perform the following manipulations,

$$
\begin{gathered}
y^{\prime} y^{\prime \prime}-y y^{\prime}+y^{2} y^{\prime}=0 \\
\frac{d}{d x}\left(\frac{1}{2}\left(y^{\prime}\right)^{2}-\frac{1}{2} y^{2}+\frac{1}{3} y^{3}\right)=0 \\
\frac{1}{2}\left(y^{\prime}\right)^{2}-\frac{1}{2} y^{2}+\frac{1}{3} y^{3}=C \text { Some constant } C
\end{gathered}
$$

Since $y(\infty)=y^{\prime}(\infty)=0$, the constant for the orbit we are interested in is 0 . Now when $x=0$, we have $y^{\prime}(0)=0$ so,

$$
-\frac{1}{2} y(0)^{2}+\frac{1}{3} y(0)^{3}=0
$$

so $y(0)=0$ or $y(0)=\frac{3}{2}$. For a non-zero solution, we use $y(0)=1.5$ In the code we try $\mathrm{t} 1=1.4$ and $\mathrm{t} 2=1.6$ and we get a good approximation. It takes 113 iterations however. The finite difference code for solving (9) is given below:

```
function [x,y]=findiff2(n)
    x=linspace(0,5,n);
    y=zeros(n,1);
    for i=1:n
    y(i)=1.5/cosh(x(i)/2);
    end
```


Figure 4: Output from the shooting code for (9). The solid lines represent the codes output. The crosses are the exact solution.

```
    dy=-J(y)\f(y);
    while(norm(dy,2)>0.001)
        y=y+dy;
        dy=-J(y)\f(y);
    end
end
function y1=f(y)
    n=length(y);
    h=5/n;
    y1=zeros(n,1);
    y1(1)=2*(y(2)-y(1))/h^2-y(1)+y(1)^2;
    for i=2:n-1
        y1(i)=(y(i-1)-2*y(i)+y(i+1))/h^2-y(i)+y(i)^2;
    end
    y1(n)=(2*y(n-1)-2*h*y(n)-2*y(n))/h^2-y(n)+y(n) ^2;
end
function J1=J(y)
    n=length(y);
    h=5/n;
    J1=zeros(n,n);
    J1 (1, 1)=-2/h^2-1+2*y(1);
    J1 (1, 2) = 2/h^2;
    for i=2:n-1
        J1(i,i+1)=1/h^2;
        J1(i,i)=-2/h^2-1+2*y(i);
        J1(i,i-1)=1/h^2;
    end
    J1(n,n-1)=2/h^2;
    J1 (n,n)=-2/h-2/h^2-1+2*y (n);
end
```

The code does work, however I have given it the exact solution as a guess. So far it hasn't converged for any other guess. This may be a bug or it may be that this problem is very sensitive.

