
Math 3210 - Numerical Analysis

Homework #4 Due Dec 5

1. Consider the boundary value problem,

y′′ − 9y′ − 10y = 0 , y(0) = 1.0001 , y(1) = 2.57052

(a) Solve the above boundary value problem using linear shooting. For the time integration
use rk2 method with time step h = 0.01.
To use linear shooting, we must write the boundary value problem as two initial value
problems. The initial value problem will be a second order problem. All the methods,
we may use on initial value problems are for first order systems. So we must write our
second order problem as a first order system. We let u = y and v = y′ then u and v

satisfy,

u′ = v ,

v′ = 9v + 10u ,

u(0) = y0 , v(0) = y′
0
.

Here is the code I used to evaluate the right hand side of this equation,

function y=f2d(t,u)

% f expects u to be a 2-vector here.

y=[u(2) 9*u(2)+10*u(1)];

end

This function returns a vector. Now we need to modify the midpoint method to work
with a system of equations. Here is my modified code,

function y=rk22(f,a,b,y0,h)

n=(b-a)/h+1;

y=zeros(n,2);

t=a;

y(1,:)=y0;

for i=2:n

K1=h*feval(f,t,y(i-1,:));

y(i,:)=y(i-1,:)+h*feval(f,t+h/2,y(i-1,:)+K1/2);

t=t+h;

end

end

You will note that this code is almost unchanged from the original midpoint code. The
main difference is now the solution is a 2×n array. The values y(:, 1) are for u and y(:, 2)
are for v. Now all we need to do is to call the Runge-Kutta code with the right initial
values and combine the two solutions as in the text.

1

function y=shoot(f,a,b,alp,bet,h)

alp0=[alp 0];

y1=rk22(f,a,b,alp0,h);

alp1=[0 1];

y2=rk22(f,a,b,alp1,h);

[n m]=size(y2)

c=(bet-y1(n,1))/y2(n,1);

y=y1+c*y2;

end

I will give the plots of the solutions in part (c).

(b) Solve the above boundary value problem using finite differences. Use step size h = 0.01.
For this method, all we need to do is construct the matrix and here I will let Matlab
invert it. To be efficient, a tridiagonal solver should be used, but we can be a little sloppy
here.

function y=findiff(p,q,r,a,b,alp,bet,h)

% we are only solving for w_1 to w_{n-1}, add in w_0 and w_N later.

N=(b-a)/h-1

A=zeros(N);

b=zeros(N,1);

x=a+h;

A(1,1)=2+h^2*feval(q,x);

A(1,2)=-1+h/2*feval(p,x);

b(1)=-h^2*feval(r,x)+(1+h/2*feval(p,x))*alp;

for i=2:(N-1)

x=a+i*h;

A(i,i)=2+h^2*feval(q,x);

A(i,i-1)=-1-h/2*feval(p,x);

A(i,i+1)=-1+h/2*feval(p,x);

b(i)=-h^2*feval(r,x);

end

x=b-h;

2

A(N,N)=2+h^2*feval(q,x);

A(N,N-1)=-1-h/2*feval(p,x);

b(N)=-h^2*feval(r,x)+(1-h/2*feval(p,x))*bet;

y=A\b;

% add in the boundary conditions

y=[alp ; y ; bet];

end

function y=p1(x)

y=9;

end

function y=q1(x)

y=10;

end

function y=r1(x)

y=0;

end

(c) Plot both solutions. Comment on the two solutions, which do think provides a more
accurate approximation.
Here are both solutions on the same graph.

3

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 0 0.2 0.4 0.6 0.8 1

line 1
line 2

The two curves are almost indistinguishable. We might expect the finite difference ap-
proximation to be better because of stability. For this problem, we can find the exact
solution,

y(x) = e−x + 0.0001e10x .

Now we plot the absolute error for both solutions,

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0.0014

 0 0.2 0.4 0.6 0.8 1

line 1
line 2

The smaller curve corresponds to the finite difference method. As you can see the
maximum error in this case is about 1

3
that of the shooting maximum error. So in this

case finite difference provides a better approximation for the same step size.
Here is the octave commands I used to make the above plots.

octave:2> y1=shoot(’f2d’,0,1,1.0001,2.57052,.01);

4

n = 101

m = 2

octave:3> y2=findiff(’p1’,’q1’,’r1’,0,1,1.0001,2.57052,0.01);

N = 101

octave:4> x=0:.01:1;

octave:5> sol=exp(-x)+0.0001*exp(10*x);

octave:9> plot(x,y1(:,1))

octave:7> hold on

octave:8> plot(x,y2)

octave:9> hold off

octave:10> plot(x,abs(y1(:,1)-sol’))

octave:11> hold on

octave:12> plot(x,abs(y2-sol’))

octave:13> hold off

octave:14> quit

5

