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ABSTRACT Van der Pol’s equation for a relaxation oscillator is generalized by
the addition of terms to produce a pair of non-linear differential equations with
either a stable singular point or a limit cycle. The resulting “BVP model” has two
variables of state, representing excitability and refractoriness, and qualitatively
resembles Bonhoeffer’s theoretical model for the iron wire model of nerve. This
BVP model serves as a simple representative of a class of excitable-oscillatory
systems including the Hodgkin-Huxley (HH) model of the squid giant axon.
The BVP phase plane can be divided into regions corresponding to the physio-
logical states of nerve fiber (resting, active, refractory, enhanced, depressed,
etc.) to form a “physiological state diagram,” with the help of which many
physiological phenomena can be summarized. A properly chosen projection from
the 4-dimensional HH phase space onto a plane produces a similar diagram
which shows the underlying relationship between the two models. Impulse trains
occur in the BVP and HH models for a range of constant applied currents which
make the singular point representing the resting state unstable.

INTRODUCTION

This paper continues the analysis of the Hodgkin-Huxley (1952) equations for the
nerve membrane that was begun in a previous paper (FitzHugh, 1960). In that
paper, which will be referred to here as “T&P,” an explanation was given of the
occurrence of thresholds and plateaus. Use was made of phase space methods (non-
linear mechanics) and of reduced systems of equations, in which one or more of the
Hodgkin-Huxley (HH) variables of state (V,m,h,n,) are held constant in order to
isolate the behavior of the remaining variables.

This approach is, however, not so informative in explaining how trains of im-
pulses occur in the HH equations, where interactions between all four variables are
essential. Two other approaches to this problem, also based on phase space methods,
are more useful. The one to be described in the present paper considers the HH
model as one member of a large class of non-linear systems showing excitable and
oscillatory behavior. The phase plane model used by Bonhoeffer (1941, 1948,
1953) and Bonhoeffer and Langhammer (1948) to explain the behavior of passi-
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vated iron wires is another member of this class. Still another member, better
suited to exposition, can be obtained by generalizing the equations of van der Pol
(1926) for the relaxation oscillator. This model, analyzed in detail below, will be
called the Bonhoeffer-van der Pol model (BVP for short).

From the BVP model one can derive a physiological state diagram in terms of
which not only impulse trains but also many other properties, including those treated
in T&P, can be presented graphically. Different regions of the diagram correspond
to different physiological states of a nerve membrane, and many classical results can
be illustrated and summarized with its help. A similar physiological state diagram
can also be derived mathematically from the HH model and relates the latter to the
same class of excitable-oscillatory systems. Thus the BVP model helps in under-
standing and explaining the HH model.

The second approach to the study of impulse trains referred to above depends
on an analysis of the stability of the singular points representing the resting state.
The Nyquist criterion of stability, widely used in electrical engineering, can be used
to predict the ranges of clamping conductance for which oscillations or infinite
trains of impulses occur. This approach will be described in a later paper.

The equations were solved with an analog computer and all figures were drawn
using an X-Y plotter. The HH equations, methods of computation, and phase space
terminology have been described in T&P. As before, more precise statements of
certain mathematical details are given parenthetically in fine print.

BVP MODEL—MATHEMATICAL DESCRIPTION

B. van der Pol (1926) proposed a differential equation to describe non-linear
“relaxation oscillators” (Andronow and Chaikin, 1949; Minorsky, 1947; Lefschetz,
1957). Its solutions do not, to be sure, give an accurate fit to curves obtained from
many physical oscillators. The equation was intended rather to represent the qualita-
tive properties of a wide class of such oscillators, its algebraic form being chosen to
be as simple as possible. The more general BVP model described below is presented
in the same spirit to represent a wider class of non-linear systems which can show a
stable state and threshold phenomena as well as stable oscillations. The BVP model
has only two variables of state instead of the four of the HH model, and its proper-
ties can therefore be visualized on a phase plane. It will be shown below, however,
that the HH equations and other nerve membrane models are also closely related
to the BVP model, which therefore provides a simplified but central unifying con-
cept for the theoretical study of axon physiology.

This section describes the BVP model mathematically; the following one, its
“physiological” properties. The two sections are closely interdependent, and either
may be clearer after reading the other. Some readers may prefer to go directly to the
following section and use the present one for reference when necessary.
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The following linear differential equation describes an oscillating quantity x with
damping constant £ (the dots represent differentiation with respect to time ¢):

X+ kx+x=0

Van der Pol (1926) replaced the damping constant by a damping coefficient which
depends quadratically on x:

Xtex®—1)x+x=0

where ¢ is a positive constant. It is convenient to use Liénard’s transformation
(Liénard, 1928; Minorsky, 1947):

y=x/c+ x*/3 — x
and obtain the following pair of differential equations:
¥ =cly + x — x*/3)

y = —x/c
The BVP model is obtained by adding terms to these equations as follows:—
i=cly+x—x/3+72) (1
y=—(k—a+ by )
where:
1—2p/3<a<1, 0<b<1, b<c 3)

Both a and b are constants. z is stimulus intensity, a variable corresponding to mem-
brane current 7 in the HH equations. For the “z-clamp” case, it is specified to be an
arbitrary function of ¢, in particular a step, a rectangular pulse, or an “instantaneous”
pulse (i.e., a constant times a Dirac delta function). The reason for conditions (3)
will appear in several places below. Fig. 1 shows the (x,y) phase plane with solu-
tions of equations (1) and (2) for z = 0. (The physiological labels in Fig. 1 are
described later.) The state point or phase point representing the state of the system
moves spontaneously in this plane along the paths (also called trajectories), which
are the curves with arrowheads. Only a few representative paths have been drawn,
but they should be thought of as completely filling the plane, like the stream lines
of a fluid flow. The broken lines are the x and y nullclines, defined by equations
(4) and (5) below which are obtained by setting x and y respectively equal to zero
in equations (1) and (2). The y nullcline is a straight line with slope —1/b and
x-intercept a. The x nullcline is an N-shaped cubic having slope —1 at the origin.
Its three parts, separated by its maximum and minimum, will be referred to as its
left, middle, and right branches. Conditions (3) on a and b guarantee that for
z = 0 the nullclines will intersect at only one singular point, which is a stable node
or focus (x = 1.20, y = —0.625 in Fig. 1). This singular point represents the rest-
ing state. The special case, a = b = z = 0, corresponds to the original van der Pol

RicHARD FiTZHUGH Theoretical Membrane Models 447



equation for which phase planes are given in Minorsky (1947) and elsewhere. (See
also bottom curve, Fig. 2.)

Like the HH equations, the BVP equations can be more easily understood by
considering separately the behavior of two subsystems. y is a more slowly changing
variable than x (except near the y nullcline). If y is kept constant at any value
(y = 0), instead of being allowed to vary according to equation (2), the corre-
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FiGURE 1 Phase plane and physiological state diagram of BVP model. Broken
lines, x and y nullclines. Dotted line; locus of initial conditions following instantan-
eous z shocks at rest, also phase line of (x) reduced system. Labeled zones form
physiological state diagram. See text for details of all figures.a = 0.7, b = 0.8, ¢ = 3,
z=0.

sponding horizontal line in the (x, y) plane may be thought of as a phase line of a
reduced system with a single variable of state x. The (x) phase line through the
resting point P (dotted in Fig. 1) has three singular points where it intersects the
three branches of the x nullcline. The middle one is unstable and represents a
threshold phenomenon. The other two are a stable excited point at the left and a
stable quiescent point (at P) at the right. Displacement of the phase point from P
to some point to the left of the unstable threshold singular point produces excitation
in the reduced system, and the phase point approaches the excited singular point.
But then (considering the complete (x, y) system again) as a result of this negative
change in x, variable y increases slowly according to (2), causing the phase line to
move upward until the excited and threshold singular points meet and vanish.
Then, in the (x) reduced system, the phase point rapidly approaches the only re-
maining singular point, the quiescent one on the right branch. Finally, y slowly de-
creases, and the phase point in the plane approaches the resting point P. This de-
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scription is similar to that given in T&P for the course of an impulse in the HH
equations (cf. also Moore, 1959) except that in the latter case the two subsystems
were each of two dimensions instead of one (Hodgkin and Huxley’s ¥ and m to-
gether behave like x; 4 and n, like y.)

In Fig. 1 the horizontal dotted line through P is also the locus of the points to
which the resting phase point is displaced by an instantaneous pulse in z. Such a
pulse does not change y directly. In the (x, y) phase plane, as contrasted to the
(x) phase line, the threshold phenomenon does not occur at a singular point, but is
of the “quasi” type (QTP) described by FitzHugh (1955). This type permits all
intermediates between “all” and “none” responses, put only for extremely accurate
settings of the stimulus amplitude. In the computer solutions there appears to be one
path (not in fact uniquely defined), labeled QTP Separatrix, from which neighbor-
ing paths diverge sharply to right and left. With the analog computer it is in fact
impossible to follow this separatrix very far into the large region labeled No Man’s
Land, because a slight inaccuracy in setting the initial value of x, and noise in the
computer, always make the phase point diverge sharply away from the separatrix
to the left or right, producing an apparently all-or-none response. (The separatrix
in Fig. 1 was actually plotted by reversing the direction of time with the computer
and converting diverging paths to converging ones, a liberty which one unfortunately
cannot take with a real nerve.) The situation is similar to that shown in Fig. 2 of
FitzHugh and Antosiewicz (1959) in which intermediate sized action potentials
were obtained from the HH equations by extremely accurate setting of stimulus in-
tensity, using a digital computer.

Excitation occurs whenever the phase point is displaced across the separatrix
from right to left; abolition (see next section) occurs for displacement from left to
right. But since the sharp divergence of paths from the separatrix path fades out
gradually in the upper part of No Man’s Land, the threshold phenomenon becomes
less sharp there.

So far, this brief analysis of the BVP equations by the method of reduced systems
has paralleled that of the HH equations given in T&P. However, when z is a strong
enough negative step to cause repetitive excitations, it is more informative to con-
sider the system as a whole on the (x, y) plane. Excitation appears on this plane as
a sequence of events which may or may not recur cyclically, depending on whether
the resting state is stable or unstable. The stability of the resting singular point can
be either calculated from the equations as follows, or observed empirically with the
computer.

Stability can be calculated as follows. Setting x and y equal to zero in equations
(1) and (2), the equations for the x and y nullclines result:

y=—x+x/3—z2 4)
(a — x)/b ©)

y
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The point of intersection of the two nullclines is the singular point P, with the coordinates
(x:;, 1) given by the solution of the simultaneous equations (4) and (5). This can be
done graphically or by the solution of a cubic equation in x, after eliminating y. The
conditions (3) on b guarantee that there be only one intersection of the nullclines. Ex-
pand the right sides of equations (1) and (2) in Taylor series about the singular point
P = (x,, y.) denoting x-x, and y-y, by £ and 7 respectively:

E=cn+ (1 —xE+ xg + £/3] (6)

7= —(E-+ bn)/c

The first equation of (6) is non-linear, but if we omit the terms of higher than first degree
from the right side, we obtain a pair of linear equations which have a singular point at
the origin (§¢ = n = 0). According to a theorem of Lyapunoff (Minorsky, 1947;
Lefschetz, 1957) this point has the same stability properties as the singular point in the
non-linear equations. Form the matrix of the coefficients of the right side of this pair of

linear equations:
M = {(l —x) ¢ }
—1/c —b/c

M has the following characteristic polynomial equation in a complex variable A:
| M=M= N+[Bbe—A—=—x)N+[1—(1—x)b]=0

The two roots A of the characteristic equation are the eigenvalues of the matrix M, and
the general solution of the linearization of (6) is a weighted sum of terms of the form
[constant times exp(Af)]. If we omit the borderline case of either root of this equation
being zero or pure-imaginary, the following three conditions are equivalent: (1) the
singular point (x,, y,) is stable, (2) the real parts of both roots of the quadratic equa-
tion are negative, (3) the pair of conditions (7) and (8) holds:

bfc — (1 — x>0 @)
1—(1—x%%>0 (8)
or, equivalently,
1—x°<p/i? )
1—x><1/b (10)

Since b and c are positive constants, 1/6 > 1 by (3), and condition (10) is always
satisfied. By (3), b/c* < 1; therefore by (9) the singular point is unstable for all x; in an
interval |x| < (1 — b/c")*/* and stable for all other values of x,. For large c, the x in-
terval of stability is practically from —1 to 41, which corresponds to the singular
point lying on the middle branch of the x nulicline. (Fig. 5) Whatever value c has, if
the singular point lies on either the right or the left branch, the singular point is stable.

The location of the singular point P and hence its stability depends on z (Equation 4).
If P is unstable, z must lie in a certain finite interval. P is stable for other values of z. The
condition (3) on a guarantees that for z = 0, P is stable, so that the resting state is stable.

Fig. 5 shows solution paths in the (x, y) phase plane for z negative and P on the middle
branch and unstable. All paths (except P itself, which is a degenerate path) approach a
closed path or limit cycle as t = + o0, either from the outside or from the inside. When
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x is plotted against ¢, an infinite train of spikes appears. It has not been possible to get a
finite train of spikes from the BVP model (see section on impulse trains below).

BVP PHYSIOLOGICAL STATE DIAGRAM

A physiological state diagram based on the BVP phase plane will now be de-
scribed. The coordinates x and y are for the moment not to be identified physically
except to say that x shares the properties of both membrane potential and excitabil-
ity, while y is responsible for accommodation and refractoriness. Later, x will be
identified with membrane potential. The parameter z corresponds to stimulating

N
dx/dt = c(x+y-x3/3+2)

dy/dt=-?':-(x-c|+by) 2=0

BVP
> a=0.7
2 1 z2=-0.4 b=0.8
c=3

-2

Van der Pol
i a=b=z=0
c=3

0 ' 200 ' 400
t

FIGURE 2 Single impulses and trains from BVP model and special van der Pol case.

current and is zero in Fig. 1, except for instantaneous stimulating pulses which set
the initial condition of x. Different regions of Fig. 1 have been labeled with the
names of different states of a nerve membrane, using for the most standard physio-
logical terms.
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Many classical neurophysiological phenomena can be portrayed graphically with
this diagram. (A few relevant references to the literature will be given in parentheses
without further comment.) Let us begin with a brief description of how a single
impulse in this model arises as a result of an instantaneous shock. (The capitalized
terms will be explained in more detail later.) The Resting Point P is stable;
a phase point displaced initially a short distance from P will return toward it spon-
taneously. If a stimulus consisting of an instantaneous shock is applied to the system,
the phase point jumps horizontally along the dotted line for a disance Ax propor-
tional to the amplitude of the shock—to the left for a cathodal shock (negative z)
or to the right for an anodal one (positive z). After a sufficiently large cathodal
shock, the phase point travels along a path to the left through the Regenerative
zone, upward through Active, to the right through Absolutely Refractory, down-
ward through Relatively Refractory, and finally back to P. This clockwise
circuit represents a complete action potential, and if x, now considered as mem-
brane potential, is plotted against time, a curve resembling an action potential
results (Fig. 2, top). If the shock is too small, no impulse results; instead, the phase
point returns more directly to P through Enhanced and Depressed (Erlanger and
Blair, 1931).

Though this model has a threshold phenomenon for excitation, it is not com-
pletely all-or-none. If the shock strength were set accurately enough on the QTP
Separatrix, and if the computer were errorless, the resulting path would travel
neither to Active nor directly back to P, but upward into No Man’s Land, as ex-
plained in the previous section. This last non-physiological term was chosen to
represent states of a nerve seldom reached in physiological experiments, (except
for graded responses) namely those intermediate between all and none responses.

The horizontal distance of a point from the separatrix is proportional to the
threshold (magnitude of instantaneous z pulse). The Enhanced and Depressed
Regions are so named because they are respectively horizontally nearer to and
farther from the separatrix than the resting point and therefore have a smaller or
larger threshold stimulus than does the resting point. Moreover, since excitation is
the result of the phase point being displaced horizontally across the threshold
separatrix, it follows that the system will be Absolutely Refractory when the phase
point is above the separatrix, where such a crossing is impossible. In the Relatively
Refractory zone, the phase point lies to the right of the separatrix and can be dis-
placed across it, but the threshold stimulus required is greater than for the resting
point. The Relatively Refractory and Depressed regions are qualitatively similar in
this respect, but the former lies farther from the resting point and has a still larger
threshold value than the latter.

Oppositely, abolition of an impulse occurs when the phase point is displaced by
an anodal shock across the separatrix to the right. This can happen if an anodal
shock is applied during the regenerative or active states (Blair and Erlanger, 1936;
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Tasaki, 1956). In the Absolutely Refractory region, the later stage of the action
potential can also be abolished with an anodal shock or partially restored with a
cathodal one, but without a noticeable threshold phenomenon.

In all cases described so far, the stimulus has been applied as an instantaneous
shock which makes the phase point jump horizontally and discontinuously in time.
The different case of a rectangular step or pulse of stimulating current requires a
change in the physiological state diagram. Fig. 3 shows paths corresponding to two

\ BVP Egns.

FIGURE 3 BVP phase plane for negative z ‘steps near rheobase. P as in Fig. 1, P’
new stable singular point for z = — 0.128.

constant values of cathodal stimulating current, one just below and one just above
theobase (z = —0.124 and —0.128). The N-shaped x nullcline is shown for
z = —0.128; it is raised from its position in Fig. 1 a distance proportional to z. The
resting state is thus moved upward along the y nullcline to a new singular point P’.
At the instant that the step cathodal current is applied to the nerve, the phase plane
changes instantaneously from that of Fig. 1 to that of Fig. 3. The phase point starts
moving continuously to the left along a new path through P, which is no longer a
singular point. The separatrix is also moved upward by the negative current. For
z = —0.124, the new separatrix is just below P and no impulse occurs, but for
z = —0.128, it is just above P and there is an impulse. Rheobase is defined as the
value of z just large enough to move the separatrix so that it passes through P.
Next, consider stimulation by a rectangular (non-instantaneous) cathodal current
pulse above rheobase and of duration 7. During the pulse, the phase point travels
from point P to the left and slightly upward as it did in Fig. 3 for z = —0.128. At
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the end of the pulse, when z returns discontinuously to zero, the phase plane of
Fig. 1 is restored. If the phase point at that instant is to the left of the separatrix in
the z = 0 phase plane, excitation occurs. This case differs from that of an instantane-
ous current pulse (T — 0) only in that, at the end of the pulse, y has increased
somewhat, and a somewhat greater value of Ax is needed to carry the phase point to
the separatrix.

A constant anodal current (positive z) moves the x nullcline downward (Fig. 4).

\ BVE Eqns.
z2=+04

N\
//_T d rectangular pulse
(;:8?\ y=0 (broken path)

z = O otherwise

T T T

-2 -1 0 | 2

FIGURE 4 BVP plane for positive rectangular z pulse showing anodal break excita-
tion. P’ and broken path are for z = 4 0.4; otherwise as in Fig. 1, where z = 0.

This moves the singular point to a new position P’ below P. The phase point, start-
ing at P, approaches P’ along the broken path. If the current pulse amplitude and
duration are both great enough, then after the end of the pulse, when z jumps to
zero and Fig. 1 holds again, the phase point will be below the separatrix, and an
impulse results. This is the classical phenomenon of anodal break excitation.

So far, nothing has been said about recovery during a cathodal current step. In
Fig. 3, the path representing an impulse makes a clockwise circuit and finally ap-
proaches P’, which is stable. If the amplitude of the constant cathodal current is
increased, however, P’ becomes unstable and is surrounded by a stable limit cycle
C, a path in the form of a closed loop which is approached by all paths in its near
neighborhood (Fig. 5). If the phase point is initially inside C but not at P, it spirals
outward and approaches C from the inside. If it is initially outside C, it spirals in-
ward, approaching C from the outside. Thus if a step of cathodal current sufficient
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to produce a limit cycle is applied to the resting BVP model, the phase point passes
from P and approaches the limit cycle C, and an infinite train of impulses results
(see Fig. 2, middle).

As a final example, the more complicated phenomenon of “break reexcitation”
in heart muscle (Cranefield and Hoffman, 1958; Hoffman and Cranefield, 1960)
also seems to have a reasonable explanation in terms of BVP physiological state
diagrams. An anodal shock of proper strength applied locally during the plateau of

BVP Egns.

a=0.7 b=08
c=3 z=-04
Stable limit cycle C

Stable limit cycle

Resting point P

a
N forz=0

‘ T T T T
-2 -1 0 | 2
X
FIGURE 5 BVP plane for z so negative as to give an infinite train of impulses,
represented by a stable limit cycle.

certain heart muscles produces abolition of the plateau, but still stronger anodal
shocks above a certain strength actually initiate a new action potential. A BVP
plateau action potential can be obtained by increasing ¢, which decreases the rate
of change of y relative to that of x. The plateau lasts as long as the phase point
remains in the active region and ends when the stable excited singular point of the
(x) reduced system disappears (Fig. 1). An instantaneous anodal shock during
the plateau displaces the phase point horizontally to the right and causes abolition
if the point reaches that part of No Man’s Land lying to the right of the QTP
separatrix. The separatrix, if followed backward in Fig. 1, stops at the right edge of
the diagram. If the diagram were extended further to the right, the separatrix would
be seen to continue rising in the phase plane until it eventually crossed that y level
of the plateau phase point at which the anodal shock is applied. A sufficiently strong
shock during the plateau therefore displaces the phase point across the separatrix
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twice, so that it reaches a point on the same side of the separatrix as that on which
it started—the suprathreshold side. The phase point then follows a path which
remains below the separatrix, enters the regenerative region, and there is another
impulse.

It happens that in the BVP model, especially with an increased c, the required
shock strength for reexcitation is very large, and this made analog computation for
this case impractical. But the BVP model is only a qualitative rather than a quanti-
tative model of excitable membranes; what is important is that it predicts the
physiological phenomenon of break reexcitation and shows how it is related to both
abolition and ordinary anodal break excitation, described above. This phenomenon
would therefore be expected to result from any new theoretical model of heart
muscle which belonged to the class of models being discussed. The actual value of
the shock strength required would of course depend on the equations used; experi-
mentally it is variable and depends on the external Ca++ concentration as well as on
the particular heart tissues used. It is also affected by the circulating currents from
adjacent excited areas.

HODGKIN-HUXLEY PHYSIOLOGICAL STATE DIAGRAM

The physiological diagram developed for the BVP model has its counterpart in
the HH model, obtainable by projection from the four-dimensional (¥, m, h, n)
phase space. Like the BVP model, the HH model can be split into two subsystems
of variables (T&P). The pair (V, m) corresponds to x in that they represent excita-
bility; they change relatively rapidly. Variables (%, n) correspond to y; they repre-
sent accommodation and refractoriness and change relatively slowly. Although each
of the two HH subsystems has two variables instead of one, the interrelations of the
subsystems are similar in both models. The (V, m) reduced system, for resting &
and n, has three singular points: a stable resting state, a threshold saddle point, and
a stable excited point. After excitation & and n change so as to make the stable
excited state and the threshold point disappear, causing recovery.

One can eliminate one dimension from each of the planes (V, m) and (h, n)
by linear projection, while retaining the properties of physiological interest, as fol-
lows. Since the curves of n and —h versus t during an action potential have similar
shapes (FitzHugh, 1960, Fig. 1), n and —h can be replaced by their average
w = 0.5(n—h) to give a simplified model. Or, from a geometrical viewpoint, the
path of an action potential, plotted in the (n, k) plane, can be fitted to within 0.1
by the line & + n = 0.85 (Fig. 6, left). Points of the (n, &) plane can be projected
perpendicularly onto this line, which is considered as a w axis, by projection along
lines of constant w, where w = 0.5(n—h). The projection lines are the broken
straight lines with positive slope in the figure. Similarly, points of the (¥, m) plane
can be projected along lines of constant u, where u = V — 36m, as shown in Fig. 6
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(right). These lines are roughly parallel to the curved threshold separatrix of the
saddle point in the phase plane of the (¥, m) reduced system (T&P, Fig 2). Thus by
projection all that is suppressed is the initial approach of the near-threshold paths
to the saddle point: the subsequent divergence of paths (due to the positive charac-
teristic root) which is characteristic of the threshold phenomenon (FitzZHugh, 1955)
is preserved. By combining these two projections, the four-space is projected onto a
(u, w) plane. Unfortunately, one cannot say that the (#, w) plane is simply a
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FIGURE 6 Diagrams to illustrate how the simplified (¥, w) representation is obtained
from the complete HH model. ¥ = V — 36m, w = 0.5 (n — h). Left; curve is path
of an action potential in the (n, h) plane. Points of this plane are projected along
lines of constant w (broken lines with 41 slope) onto line labeled “A + n = 0.85,”
which serves as a w axis. Right; phase plane of the (¥, m) reduced system (Fig. 2 of
FitzHugh, 1960, modified). Points of the plane are projected along lines of constant
u (broken lines with positive slope) onto a u axis (not shown).

deformation of the (x, y) phase plane of the BVP model, and therefore that from
the HH model can be derived a member of the class of two-dimensional excitable
systems of which the BVP model is a representative. In fact, the (u, w) plane is not
a phase plane at all. Since each of its points is the projection of a plane in the four-
space, an infinite number of values of 4 and w will in general exist at that point. It
may be that a curved-surface projection instead of ‘a planar one could be found such
as to make 5 and w unique at each point. Until such is found, however, the planar
projection is simply a useful expository device, presented in the spirit of applied
mathematics, for comparing the HH and BVP models.

The (u, w) plane can be labeled as a physiological state diagram for the HH
equations (Fig. 7). The qualitative similarity of Figs. 1 and 7 suggests that, with the
reservation expressed just above, the HH model can be considered as belonging to
the same general class of excitable-oscillatory systems as the BVP model.

Figs. 8 to 10 show the effects of various steps and pulses of current; they corre-
spond to Figs. 3 to 5 for the BVP model.
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To complete the comparison, one can plot (z, x) characteristics for the BVP
model corresponding to the current-voltage (I, V') characteristics of the HH model
described in T&P for the reduced and complete HH equations (Fig. 11, left) To

x-clamp

(ma/cm?)

'vl‘HH

FIGURE 11 Above, left; BVP steady-state (z, x) characteristics for (x) reduced
system and (x, y) complete system. Above, right; BVP (z, t) curve under x-clamp,
in which x changes stepwise from x, to x, at t = 0. Below, left; HH (I, V) current-
voltage characteristics for (V, m) reduced system and (V, m, h, n) complete system.
Below, right; HH (I, t) curve under V-clamp, V changing from V, (= 0) to V,.

obtain the (z, x) characteristic for the x reduced system, let x, and y, be the resting
values, the coordinates of the singular point P when z = 0. The characteristic for the
(x) reduced system is obtained by setting

y=y and X = 0. Itsequation is

z= —yl_x+x3/3

This curve is N-shaped and intersects the x-axis in three places, the three singular
points of the (x) reduced system. For other values of y than y,, these points will be
elsewhere, and there may be only one of them instead of three. The characteristic
for the complete system is obtained by setting ¥ = y = 0 and eliminating y:

z=(x —a)/b— x+ x*/3.
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This curve intersects the x-axis only at the resting singular point of the complete
system. These (z, x) curves resemble qualitatively the corresponding theoretical
(1, V') curves of the HH model (Fig. 11, below left).

For the case of an x-clamp, in which x is changed stepwise from its resting value
x; to a different value x, at ¢ = 0, equations (1) and (2) have the following solution
(Fig. 11, right, above):

1< 0:x=x,, Yy =, z2=2=0
t=0:x = x,

y = (a— x)(1 — exp (—bt/c))/b

2= (xs — x1) 8B)fc — % + x°/3 — ¥

The term containing the Dirac delta function §(¢) is the “capacitive surge” at
t = 0 (not shown in Fig. 11); there is a similar capacitive surge in the HH (I, )
solution. (Note that the “capacitance” in the BVP model equals 1/c.) The initial
upward peak to z = zp (Fig. 11) corresponds to the HH Na peak. Then z falls
toward its final steady-state value z,, corresponding to the HH maintained K current.
Values z and z; are given on the (z, x) diagram by the intersections of the vertical
line x = x, with the characteristics of the (x) reduced system and of the complete
(x, y) system, respectively. The BVP (z, t) curve, after its initial peak, consists of
an exponential curve with time constant c¢/b. The somewhat different shape of the
(I, t) curve below results in part from the extra variables of the HH model. In
particular, its rounded peak, lower than Ig, results from the variable m; if the
relaxation time r,, were made zero, a similar sharp peak to Ir would result. In the
BVP model, there is of course no separation of z into different currents. Such a
separation is among the physical assumptions of the HH model, but is not essential
for the class of excitable systems which the BVP model represents.

IMPULSE TRAINS IN THE HODGKIN-HUXLEY
EQUATIONS

In the HH equations, constant current steps over a wide range of values give
infinite trains of impulses (Fig. 12) or, in the phase space, stable limit cycles (Fig.
10). As in the BVP equations, a limit cycle appears when the singular point cor-
responding to the resting state becomes unstable. Calculations of this stability will
be given in a separate paper.

It has been possible to get short trains of a few impulses, but only by adjusting
I to the limit of accuracy of the analog computer, and even then the number of
impulses varies from run to run as the computer drifts. A finite train obtained with
the more accurate digital computer is given by FitzHugh and Antosiewicz (1959).
Thus in the equations the occurrence of finite trains in response to a current step is
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FIGURE 12 Impulse trains, damped and undamped, from HH equations, for different
values of current (I) steps beginning at ¢z = 0.

only a borderline phenomenon occurring over a very narrow range of currents,
between the current region for one impulse and that for infinite trains.

Experimentally, however, in excised squid giant axons, only short finite trains
occur, even for current values over a considerable range (Hagiwara and Oomura,
1958). In Fig. 7 of their paper are shown impulses of one axon in which, as the
current step amplitude was increased, the number of impulses in the train increased
from one to four and then decreased back to one. Some axons, however, never gave
more than a single impulse for any value of current. However, excised squid axons
in very good condition give longer trains (Tasaki, personal communication), and it
may be that finite trains are a sign of poor condition.

This represents, therefore, a major disagreement between the HH equations and
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the real axon. It would seem that in the real excised axon there is some accommoda-
tion process slower than any in the HH equations. If the equations were augmented
by the addition of another accommodation variable with a relaxation time of tens
of milliseconds, then the original equations would still be adequate as a reduced
system, for times of the order of a couple of milliseconds. If this added variable
changed as a result of several impulses so as to make the singular point of the
original equations change from instability to stability, then a finite train would result.

A slow process of the sort mentioned is reported by Frankenhaeuser and Hodgkin
(1956). They studied the changes of resting potential and positive after-potential
as a result of repetitive stimulation. They attribute their results to the accumulation
of potassium ions in a space outside the excitable membrane. This would be ex-
pected to affect both the equilibrium potential Vx and possibly the conductance
coefficient gx for potassium ions. Some analog computation done with Dr. John
Dalton on the effects of increasing the external concentration of potassium ions
outside the axon showed that stability is lost when Vx is decreased, but restored
when 2x is also increased. If the latter effect of slowly accumulating potassium ions
were to predominate, then finite trains would be expected instead of infinite ones.
However, as Frankenhaeuser and Hodgkin state, “further experiments are needed
in order to place the effect on a fully quantitative basis.”

DISCUSSION

A number of papers have been devoted to attempts to understand the phenom-
enological properties of excitable tissues, as distinguished from their physicochemi-
cal constitution, by means of non-linear models. Van der Pol and van der Mark
(1928a, 1928b, 1929) built an electrical model of the heart consisting of three neon
tube relaxation oscillators of progressively decreasing natural frequencies, to repre-
sent the sinus, the auricles, and the ventricles. These were interconnected by uni-
directional electrical links, and the whole system was driven by the sinus as pace-
maker. By interfering with the links various pathological conditions were reproduced.
These authors also suggested that striated skeletal muscle could be represented by
a neon tube circuit modified so as not to oscillate spontaneously, but to have a
stable resting state instead. They called this a “relaxation cable” and it would be quali-
tatively similar to the present BVP model. (Other somewhat similar experiments
were carried out by Bethe, 1940—41a, 1940-41b, 1943, 1946.)

The BVP model is also qualitatively similar to that proposed by Bonhoeffer
(1941, 1948, 1953) and by Bonhoeffer and Langhammer (1948) to describe the
Ostwald-Lillie iron wire model of nerve. These authors drew comparable phase
planes, but specified no equations.

Just as the van der Pol equation represents qualitatively a wide variety of relaxa-
tion oscillators, the BVP model can be taken as a representative of a still wider class

RicHARD FitzHUGH Theoretical Membrane Models 463



of non-linear excitable-oscillatory systems which show threshold and refractory
properties as well as oscillations or infinite trains of responses. These include, in
addition to those already mentioned, the membrane model of Karreman (1951)
and Karreman and Landahl (1953), monostable and free running multivibrators
(Anderson, 1952; Farley, 1952), and porous fixed-charge rigid membranes
(Teorell, 1958, 1959, 1960).1 These systems have phase planes which qualitatively
resemble that of the BVP model.

The BVP model is not intended to be an accurate quantitative model of the axon,
in the sense of reproducing the shape of experimental curves; it is meant rather to
exhibit as clearly as possible those basic dynamic interrelationships between the
variables of state which are responsible for the properties of threshold, refractori-
ness, and finite and infinite trains of impulses. The algebraic form of the BVP
equations is not important, and was chosen as the simplest; it could be changed
without altering the general properties of interest here.

The BVP and HH models contain a quasithreshold phenomenon (FitzHugh,
1955), in which all intermediates between all and none responses can be obtained
by adjusting the stimulus with extreme accuracy. Graded responses of membranes
which play an important role in neural integration (Bishop, 1956; Bullock, 1959;
see also Tasaki and Bak, 1958) could arise from equations of the same general
class, but having a less sharp QTP. Quantitative changes in the equations of the
excitable-oscillatory class can change a very sharp QTP to something which a physi-
ologist would call simply an “active” response without threshold.

Finally, a few remarks on the relation of the present results to earlier theoretical
work on excitability. Weinberg (1942) constructed from experimental data a curve
of de/dt versus e, where e is Rashevsky’s excitatory factor. This resembles the cubic
relation between x and x as given by the differential equation (1), with y constant,
for the BVP (x) reduced system.

Without going into detail, it should be mentioned also that the phase planes for
linear two-factor theories such as those of Rashevsky (1933, 1948) and Hill (1936)
resemble somewhat the region of the BVP plane containing the resting point and
the nearby part of the separatrix, except that in this case the separatrix is defined by
a discontinuous threshold phenomenon instead of a QTP (FitzHugh, 1955).

Karreman (1949) considers a generalization of van der Pol’s equation which is
equivalent to equations (1) and (2) with b = z = 0, and shows that it has no
periodic solution (limit cycle). Then he considers a further generalization which has
both a stable resting singular point and a stable limit cycle. This is of the sort called

1 In Teorell’s mathematical model, V' (rate of water flow) and P (hydrostatic pressure) can be
taken to correspond respectively to x and y in the BVP model. Membrane current 7 corresponds
to z. However, P but not V¥ is controllable as an input variable. Although his current-voltage
curves resemble those of the HH model, membrane potential (E) plays a somewhat different
role in his model, since there is no membrane capacitance to delay changes in E.
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a “hard oscillation” as contrasted to the “soft” oscillations arising in the BVP model
for negative z.

The physiological state diagram is intended primarily as a device for representing
the facts of axon physiology in an organized fashion and of relating nerve mem-
brane models to those of a number of physically quite different systems which, how-
ever, behave very similarly. Non-linear mechanics provides a language particularly
well fitted to describe models of excitable systems, in that it emphasizes qualitative
properties which they share rather than details of the form of their equations which
differ from model to model. In the future there should appear new mathematical
models based on various contemporary concepts of the molecular structure of the
nerve membrane, and the methods used in T&P and the present paper ought to make
it easier to predict whether they will have the expected physiological properties
before actual computation.

The possibility of representing excitable systems by a generalization of the van der Pol
equation was suggested to the author by Dr. K. S. Cole.

Received for publication, March 9, 1961.
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