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TRAFFIC DYNAMICS: STUDIES
IN CAR FOLLOWING

Robert E. Chandler, Robert Herman, and Elliott W. Montroll*
Research Staff, General Motors Corporation, Detroit, Michigan
(Received November 8, 1957)

The manner in which vehicles follow each other on a highway (without pass-
ing) and the propagation disturbances down a line of vehicles has been
investigated. KExperimental data is presented which indicates that the
acceleration at time ¢ of a car which is attempting to follow a leader is
proportional to the difference in velocity of the two cars at a time ((—A4),
A being about 1.5 sec and the proportionality constant being about 0.37
sec™l. It is shown theoretically that the motion of a long line of vehicles
becomes unstable when the product of the lag time and the proportional-
ity constant exceeds one-half. The experimental data implies that driv-
ing is done on the verge of instability. A variety of other laws of follow-
ing is analyzed theoretically.

HE VITAL DEPENDENCE of our daily activities on the efficient

and safe flow of vehicular traffic has stimulated the accumulation of
enormous amounts of relevant empirical data by traffic engineers.!!!
These data and the parallel research in road construction have been the
basis of the development of our modern highways. However, it is only
recently that serious thought has been devoted to the analysis of the funda-
mental mechanisms which operate to control the movement of traffic.

Several interesting theoretical approaches to the characterization of
these mechanisms have been proposed. A review of these, as well as an
extensive bibliography, has been given by GERLOUGH AND MATHEW-
SON. 2

Pipes!® has studied the dynamics of a linear array of vehicles whose

* The last-named author is consultant to the Research Staff, General Motors Cor-

poration. His permanent address is The Institute of Fluid Dynamies and Applied
Mathematics, University of Maryland, College Park, Maryland.
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motion is characterized by rules given in the California Motor Vehicle
Code Summary, namely, “a good rule for following another vehicle at a
safe distance is to allow yourself the length of a car (about 15 feet) for every
ten miles an hour you are traveling.”” He showed how lines of cars stop
and start and perform other following operations on the assumption that
responses are immediate and that no inertial effects exist in the vehicles
or response lags in the operators. He also discusses several other mecha-
nisms of following. Similar analyses have also been made by ReuscugLn.™

LicaTHILL AND WHITHAMP! and Ricuarps!® have postulated the den-
sity of traffic on a long highway to be a continuous function of position along
the highway and of time. The traffic is then treated as a fluid flowing
along the highway. The mathematical methods of fluid dynamics have
been applied to a discussion of various highway phenomena, such as the
development of shock waves when sudden stops and starts are made.
Prager™ has made a two-dimensional continuum model of the flow of
traffic in large areas, such as cities.

NeweLL® has stressed the analogy between the motion of vehicles on
a sparsely populated highway and the behavior of molecules in rarified
gases. The motion of both is a ‘free flow’ except during occasional en-
counters with other elements. When a fast car overtakes a slow one, the
encounter usually results in a loss of time, namely, that required for the
passing operation, or an equivalent reduction in the mean velocity of the
fast car. Occasionally the opposite effect occurs when a driver on a low
density highway speeds up in preparation for and during the passing opera-
tion.

Considerable interest exists in the simulation of traffic with high speed
computers. For example, GERLOUGH AND MaTHEWSON!? and Goopx!
have been simulating the behavior of vehicles at road intersections.

Although the fluid flow approach mentioned above shows considerable
promise of providing a framework for a general theory of traffic, we feel
that it is worthwhile to investigate the possible application of another
highly developed branch of modern applied mathematics, namely, the
theory of servomechanisms and network analysis. In its most general
form this theory is merely that of the analysis of the propagation of assorted
signals through ‘black boxes’ arranged in various topological configurations.
In traffic analysis we might consider individual vehicles or certain sets of
vehicles as the signals and the highway as the network.

An important ‘black box’ in a traffic network is an intersection with or
without a traffic light. The four outputs, the traffic leaving the intersec-
tion in four directions at time #, are related to the four inputs, vehicles
approaching the intersection during some time interval {—r. The de-
pendence of the outputs on the inputs characterizes the intersection
‘black box.’
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The manner in which a given length of intersectionless highway fits
into the black box pattern can be seen by considering a two-lane highway.
Suppose two types of vehicles are using the highway—low speed trucks and
high speed passenger cars. First consider the case of traffic flowing in
opposite directions in the two lanes with the occasional passing of low by
high speed vehicles. At low traffic densities only a small amount of time
is lost in passing so that the output of fast vehicles in one lane is simply
related to the input of both fast and slow vehicles of the same lane at some
previous time interval. As the traffic density increases an interaction
develops between the flow in the two lanes—opportunities for passing be-
come rarer and the output of a given lane is related to the input of both
lanes (and perhaps also to the output of the other lane since a jam in the
second lane prevents passing in the first). Finally, as the density becomes
very high no passing can occur. In the case of both lanes of traffic proceed-
ing in the same direction, the output of fast vehicles from a given length of
highway depends on the input of all types. The resistance to flow of fast
vehicles depends increasingly on the number of slow ones as the over-all
density increases, since a passenger car trapped behind a truck in the slow
lane has difficulty in escaping when other passenger cars are whizzing by in
the fast lane. The detailed relations between inputs and outputs in a
stretch of highway gives the characteristics of a schematic black box that
might be used in a network analysis.

Once the characteristics of the elements of the traffic network are
understood, we can expect to be able to employ some analogies between
traffic and communication theory, since one of the main problems of a com-
munications engineer is to pass as much information on a given circuit per
unit time as possible while the traffic engineer attempts to pass as many
vehicles as possible. As in communication theory, various sources of
noise exist in traffic theory, e.g., pedestrians.

Instabilities of two types exist in traffic—traffic jams and accidents.
Of the two kinds of accidents the spontaneous (caused by such driver
failure as falling asleep or committing errors in judgment, and such me-
chanical failure as blowouts) and the inherent (which results from the ac-
cumulation of small effects over which nobody has complete control and
leads to systems instability), only the second is amenable to some theo-
retical analysis (the first being statistical in nature).

A driver programs his driving operations in various ways. In the
absence of other interfering vehicles, he attempts to keep his speed fairly
constant at a set point determined by a compromise between the urge to
minimize trip duration and maximize safety. When following other ve-
hicles whose speed is of the order of his set point speed the driver intro-
duces a new set point, the inter-car spacing whose value depends on his
speed.
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The servomechanism approach is especially useful in clarifying the role
and interaction of the three components of the traffic system—the road
topology (number of lanes, nature of intersection, signals, warning signs,
etc.), the vehicle characteristics (speed, acceleration and deceleration
qualities, signaling mechanisms, vision, etc.) and the operator’s behavior
(range of perception, lags between perception and response, etc.). This
approach gives one the opportunity of making the study of traffic an ex-
perimental as well as an observational science.

One can set up artificial traffic situations to correspond to various ele-
ments or ‘black boxes’ in the traffic network and by controlling the nature
of the inputs the dependence of outputs on inputs might be established with
greater dispatch than is possible by a detailed analysis of traffic on real
highways. We are optimistic enough to believe that the dynamics of
real traffic can be synthesized from results of experiment and theory.
One of the results of this type of investigation is that quantitative informa-
tion might be obtained on the effect of the introduction of new signaling
devices on cars and roads and of the behavior of abnormal drivers (tired,
drunk, etc.) on the elements of the traffic network. Finally if the vehicle
of the future is to be automatic as well as automobile, its design can only
follow an understanding of the traffic system as a servomechanism.

This paper is our first discussion of a traffic element treated as a servo-
mechanism. We consider the theory of the manner in which one car fol-
lows another, and are especially interested in determining the conditions
required for stable following. We shall propose various models of the game
of ‘Follow that car!’ and compare such models with experimental data on
how cars are actually followed. There is some merit in studying models
which do not correspond to general practice since some of these may be
more stable (and safer) and might be put into use by installing appropriate
signaling devices on cars. The theory discussed here is not limited to auto-
mobile traffic but might be applied to other ‘follow the leader situations.’
We hope in future publications to discuss a variety of traffic network ele-
ments and to make remarks about complete traffic systems.

THEORY OF FOLLOW THE LEADER

AccmeNTs caused by improper following can occur in two ways. If a
driver follows the car in front so closely that he cannot avoid an accident
caused by a sudden perturbation, he has merely been using bad judgment
and no mathematical analysis is required. However, accidents frequently
occur in collisions which involve cars considerably behind the car that
initiated some fluctuation. It is such accidents that may result in the mul-
tiple car pile-ups which are sometimes observed on congested superhigh-
ways, especially at high speeds. It is this latter case that results from an
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amplification of the original perturbation as it is transmitted down the line
of traffic.

Let us consider a line of identical vehicles that are attempting to fol-
low each other in a steady or stable manner. We assume that if such a
state could be achieved, the separation distance between vehicles plus
the car length would have a constant value* a and each vehicle would
have the same velocity ». The spacing ¢ would in general depend on ».
We let u.(¢), the deviation of the velocity of the nth vehicle from the ve-
locity v, be given by

Un(8) =dx,/di—, (1)
where x measures distance and y,(f) the spacing of vehicles given by
Yn(l) =Zna(t) = 2a(t). (2)

As the operator of the nth vehicle observes variations in u,(¢) or y,(),
he applies either his accelerator or brakes to keep from lagging or closing
in on his leader. Two factors prevent this operator from immediately
reproducing the leader motions. His delayed response and that of the
mechanisms which transmit brake and acceleration signals to the vehicle
contribute a lag in the follow-the-leader process as does the inertia of the
vehicle itself.

The accelerating force (other than the force required to maintain the
steady motion) applied to the nth vehicle at time ¢ can be expected to
depend on its instantaneous velocity deviation u,(f) and on some func-
tional of the difference in velocities of the (n—1)st and nth vehicles
Un_1(7) —un(7) (for some range of r with 7=¢) as well as on a functional
of the spacing y.(7). The equations of motion of the individual ve-
hicles assumed to have the same mass, M, are then given by

M dun(t)/dt=F{un(1); filtina(7)—wun(7)]; folyn(7)]}, 3)

where uo(¢) refers to the velocity pattern of the lead vehicle.

In the past, vehicle operating data has not been analyzed with a view
to determining the precise form of the functional F. We shall discuss
the results of preliminary experiments carried out for this purpose later in
this paper. The purpose of the present section is to investigate the sta-
bility characteristics of various choices of the functional F. Even though
some of these forms may not be generally prevalent in automobile opera-
tion today, some knowledge of their consequences may be of interest in
that they indicate dangerous types of behavior and might suggest new

* When the mean separation distance is very large each driver tends to behave in-
dependently and the theory developed is no longer applicable. We are concerned

primarily with the high traffic density situation in which no passing is allowed. We
hope to develop a phenomenological thenry of passing at a later time.
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forms of signaling devices for the improvement of responses. The de-
velopment of the automatic automobile of the future will require an under-
standing of the follow-the-leader process. The mathematical models
given below are linear. As will be pointed out later linear equations ap-
pear to give surprisingly good agreement with an experiment that corre-
sponds to the high density follow-the-leader case. The introduction of a
nonlinear functional causes no fundamental difficulty in solving the
equations of motion. This is so because the equation of motion for a
particular vehicle depends only on the behavior of its predecessor so that
the equations can be solved successively. Complications would arise if
the influence of vehicles other than nearest neighbors were included.

Proportionate Control

As a first example we postulate that the applied force is proportional
to the instantaneous difference in the velocity of a given vehicle and its
predecessor, or the case of ‘proportional control’ in the language of servo-
mechanism theory. The equations of motion of a line of N identical
vehicles each of mass M is

M dun/dt=N\ (Un_1—1n), (n=1,2,---,N) (4)

where A is the sensitivity of the control mechanism. At instants in which
a lead car is going faster than the following car, the follower applies an
accelerating force and vice versa. We assume in equation (4) and
throughout this paper that the sensitivities for acceleration and decelera-
tion are identical. Although this is a reasonable approximation in a
properly functioning car at low speed, it is certainly not the case at high
speed or when for example either the brakes are poor or an engine is not
well tuned. The solution of these equations depends on the velocity pat-
tern, uo(¢), of the lead vehicle. The stability of a line of traffic depends
on whether a local fluctuation in velocity is damped out or amplified as
it propagates down the line of cars. There are two types of instability,
local and asymptotic instability. We are concerned with the latter. It
should be noted that even asymptotic stability conditions depend on the
equilibrium spacing and velocity. If the equilibrium spacing is small,
then one does not have to go back far in the line of vehicles behind the
initial perturbation to find the occurrence of a collision. Although from
our solutions of the equations of motion one can determine where down
the line an accident occurs we are primarily interested in the criteria for
the growth or decay of a disturbance.

Since the system now under consideration is linear, this stability ques-
tion can be investigated in terms of the Fourier components of the driving
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function ue(f). Let us assume that the driving function is monochromatic

with the frequency w so that '
up() =e™". (5)

Of course an arbitrary driving function can be expressed as a linear com-
bination of monochromatic components by the usual Fourier analysis.
By substituting

) =fae™,  fo=1, (6)
into equation (4) we find

(@M /N) fo=Ffr1—Fn, ©)
so that Fu=1F+1M/N)"" fo, (8)

and  u.() = (1+"M*/N) " exp{i [wt—n cos ' (14+"M* /A (9)

The amplitude of the velocity deviation decreases with increasing n
for all frequencies, masses, and sensitivities. Hence instantaneous pro-
portional control is stable under all circumstances. The phase velocity
of a signal of frequency w, in terms of car spacings per second is

dn__ —1 2212 1\ 2\ —1/2~0 sz/)\ for w—0
g =@ cos (14" M*/N) :{ wr/2 for w—co. (10)
The spacing between the (n+1)st and nth vehicle is
t
5O =00+ [ s =01,
to (11)

=1y (to) + (M /N) (1 +iwM /N) " (€™ —e™").

Even though the decay of y, with n implies asymptotic stability the
amplitude of say y; might be sufficiently large to cause local instability.
Suppose one chooses f to be a time at which the spacing y.(f) has the
normal value a. Then the greater the sensitivity A, the more stable the
spacing for all £ and n. In principle one would like to make A\ as large
as possible. However, we shall see below that time lags in control sys-
tems limit the sensitivity N\ for stable driving. Qualitatively the limita-
tion results from the fact that if both the lag and A are large, then large
corrective measures are taken for observed variations whose effects might
die out more quickly than the time required for the responses to make
themselves felt.

Response Lag

Equation (4) can be generalized to include the lag in the response of
the operator through the introduction of a weight function ¢(#). Then
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the following relation

A R ) (12)

indicates that the total force applied at a given time ¢ depends on
a weighted average of all earlier differences in u,: and u,. The choice

0, (r<A)

A (r>a) 13)

a(r) =\ H(T—A)"—“{

where H is the Heaviside step function, or
d(r)=N8(r—A4Q), (13a)

8(z) being the Dirac delta function, corresponds to a time lag A between
the observation of a velocity difference and the application of a correcting
force. Kquation (12) then becomes

M du,(t)/di=N\ [un_1(t— A)—u,(t— A)]. (14)
As before we let uo(t)=e"",

and substitute equation (6) into equation (14). We then find

(oM /N) €™ fu=Fu-1—fus (15)
or 2 10w € fu=fr1—Fn, (15a)
where u=M/(2N),
so that Jo= (142 tuw )™ fo, (16)

and

Un(t) = (144 g0’ — 4 po sinAw) ™™
Xexp{i [wi—n cos (144 p'e’ —4 pw sindw) ]}, (17)

The amplitude factor decreases with increasing n if
144 g0’ —4 po sinAw>1,
ie., if 4 >4 psinwA. (18)

Low frequencies give the greatest limitations on sensitivities. As w—0,
A must satisfy the inequality
AN<M/(2 A), (19)

or A<y, (19a)
Hence, for a given lag A, a stable operation results as long as the inequality
is satisfied.

As in the previous case the spacing between the (n—1)st and nth
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vehicle is given by
YD) =yalte) +2 ule™ TV = V] (142 due )" (20)

A more realistic response function ¢(¢) is one with a dead period lag
followed by a continuous response

A1 —e ) (r>A4)
U'(T) { (T<A) (21)
Then our fundamental equation becomes
O [y = —le=n] T (@2)

Differentiation of equation (22) with respect to ¢ yields

d*u,(t)

__)\ ® enys A Yy —
M T = ;S-_/‘A e a;[un_l(t T) un(t T)]d73

so that after integration by parts we find

We again set u, () =f, ¢ and find
A e—imA no ;
it ={>\ el il —asz} ¢ @4

It is easy to show by the methods discussed above that fluctuations in
our line of traffic will be damped out rather than amplified if

Mo (148"w") >2 \ [sinwA-+wd coswd].

As before, the most restrictive condition on time lags and relaxation times
exists at low frequencies. Stability exists at all frequencies if

A<M /[2(5+A)]. (25)

Notice that the time lag A and the relaxation time 6 are additive in de-
termining stability conditions.

Constant Spacing

A mode of driving that is unstable even without control-response lags
is that in which an operator attempts to keep the distance between ve-
hicles constant and applies a force proportional to the deviation of this
distance from the required spacing when fluctuations occur. We intro-
duce a moving coordinate system which progresses with the mean velocity
of the lead car and has its origin at the position the lead car would have
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if it always moved with this velocity. Then, if a is the required spacing,
we let z,(f) be the deviation of the position of the nth vehicle from the
point —an in the moving coordinate system.

The equations of motion of a line of vehicles that employs this mode
of control are

M &2, /df =K (Xny— ). (26)
Again suppose xo(t)=e™"
and Ta(t) =Fne™";
then —~ Mo =K (fa1—Fn),
so that Jo=(1=MK&" fy (27)
or n(t)=(1—MEK 'w") ™" ™", (27a)
Note that for any value of w a resonance condition exists when

w=(K/M)", (27b)

so that fluctuations in separation distance would be amplified. This
situation is of importance when a group of cars follows one another at
very small velocity independent distances such as occurs frequently on
our super highways during rush hours. Then a fluctuation in position of
one car amplifies down the line of cars and can cause an accident if the
line of cars is sufficiently long.

California Code

A control scheme whose stability is rather insensitive to lags can be
devised by following a rule suggested in the California Vehicle Code Sum-
mary:®  “A good rule for following another vehicle at a safe distance is
to allow yourself the length of a car (about fifteen feet) for every ten
miles per hour you are traveling.” This rule implies that

Tp—a1= xn,—}' b+ T vn+Ln-—1,

where b is the standard distance between vehicles at rest, L, is the length
of the mth vehicle, and T is the time constant inferred by the California
Code [T=215 ft/(14.67 ft/sec)=1 sec]. We assume L, to be a constant,
¢—Db, for all vehicles and write

Tn1=Tpt+c+T v,. (28)

Fluctuations in lead car performance would, as a result of various
response lags, cause equation (28) to be violated in spite of the best in-
tentions of followers. If

0n(®) =0 (t) —n(t) —c— T v,() >0, (29)
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the nth driver would accelerate in order to recover the equality in equa-
tion (28) and vice versa. Let us suppose that at any time ¢ a force pro-
portional to 8,(f—A) is applied to the nth car. Then the equations of
motion of our line of vehicles are

M &2,/ =K [2p1(t— A)—2,(t—A)—c—T da,(t—A)/dt].  (30)
The constant ¢ can be eliminated by letting
Tn=x, —ctT ™.
Then z, satisfies the equation
M @z, #)/df =K [2/na(t—A) =2,/ (t— A)—T d,’ (t— A)/df].  (31)
As usual, we investigate stability by letting @' (£)=f. ¢“'. Then
fu=(1+iwT—ME " %)™,
and our stability criterion is
T+ (MK "w)’>2 MK ™" [coswA+wT sinwAl. (32)
The low frequency condition, w—0,
T°>2 M/K (33)

is sufficient to insure stability at all frequencies independently of the lag,
A. Note that if this condition is not satisfied, resonances might occur.
Suppose the lag A is very small then equation (32) becomes

T+ (MK '0)’>2 MK [1—14 o"A+"TA]
or o [MPK 4+ MK 'A*—TA|>2 MK —T" (34)

Hence, if equation (33) is not satisfied, resonances occur at frequencies w
for which the absolute value of the denominator in equation (31a)

vanishes:
14"+ MK "0' =2 MK '’ (coswA+Tw sinwA), (35)

which reduces to equation (27b) when 7'=A=0.

The inequality T°>2 MK " is to be interpreted as meaning that sta-
bility exists for any sensitivity K provided that the time constant 7 is
made sufficiently large. Remember that a large value of 7' implies a
conservative or greater spacing between cars.

Propagation of a Perturbation

One can follow the details of the propagation of a perturbation down
a line of cars through the use of the Laplace transform. As an example
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let us suppose that the dynamical equations are those given in equation
(12) and that no disturbance in velocity occurs for £<0. Then

M%% [ sli=0) —w—D o), (0=1,2,++) (12)
0

Furthermore we assume that the velocity variation of the first car from
the average velocity 7 is given by

uo(t) = (1), (36)

where f(1)=0 if 1<0. We define the Laplace transforms of w,(f), o(t),
and f(¢), respectively, to be

Vo) = [ wl) 6 db, (37)
o
Si(s) and F(s). Then it can be shown that
_ 81(8) :ln
Ua(s) = [m f(s) (38)
The standard Laplace transform inversion formula yields
_ 1 et Sl(s) :‘n o
0=k [ 56 | o) | eas (39
while the spacing between the (n—1)st and nth car is given by

ot [ T8O T i
w@=atges [ 56 | 520 T isort @ —nas, @0

where a is the normal spacing.

As an example of the application of equation (39) we consider the
propagation of disturbances in a system with a dead period lag A. Then
using equation (13a) and

Si(s)=N\ ",

1 c+i00 1 7 s
we have un(t)=—27i fc_.w f(s) [m] e’ ds. (41)

Let us assume that no singularities exist in the integrand in the right half
plane Re s=0. Then we can set ¢=0 and s=17w t0 obtain

Un(£) =%r f_ : F(Gw) [142 tpwe 4™ ™ dw. (42)

One can show that if the stability condition N<M/2A is satisfied the
quantity in square brackets in equation (42) achieves its maximum ab-
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solute value when w=0. Hence when n is large we can expect values of
o near 0 to give the main contribution to u,(f). In this region

142 ipw e | " =exp|{ =2 fuw—2 u (u—A) & +0(")}, (43)

so that
1 [ . .
u, (t) =5- f_w [f(0) 47 f'(0) - - -] explie(t—2 un)] ()
Xexpl—2 p (p—A) nw’+0(nw’)] do.
If we let 2=[2 un (u—A)]" w, (45)

then, as n— o,

2 e [T . t—2 \
w, (1)=21(0) [8 7'un (u—A)]" [we exp{z mﬁ%)]m} y dy, (46)

and finally

_ (=2m’
Sun (u—2a)f"

This shows that under stable conditions the low frequency component of

a disturbance is transmitted over the greatest distance. The velocity of
propagation, in number of car separations per unit time, is

n/t=NM=1/2 u). (48)

w, ()2 (0) [8 wun (u—a)] " exp{ (47)

As a result of experiments that will be described later the quantity /M
is of the order of 0.4 sec™ for a typical modern vehicle used in the experi-
ment. The width of a time pulse is of the order of

2 un (u—A)].* (49)

Notice that as the lag A increases (i.e., as A—u) the amplitude of w,(Z)
grows until instability is reached when A=pu. When A>u in the un-
stable range, equation (47) is no longer valid because the denominator of
the integrand of equation (46) has a pole to the right of the imaginary
axis. When one wishes to follow the details of the development of an
instability in a line of cars separate integrations of equation (41) must
be made for each value of n.

Velocity-Dependent Sensitivity

It should be pointed out that it would be surprising if the sensitivity
N\ were velocity independent. Suppose as a rough correction we assume
that
A=Xo (1+aw). (50)
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Then in a range of small velocity variations about the average # the sta-
bility condition in equation (19) becomes

M (1+ad) <M/(2 A). (51)

Hence if the velocity coefficient o were positive Ao would have to be re-
duced with increasing velocity to preserve stability.

Emergency Control

When two cars become closer than some critical distance, X (whose
value might depend on the velocity of the second car), an emergency de-
celerating force is applied by the second car to prevent a collision. The
operator would slam on his breaks to give the maximum deceleration
mechanically feasible. The law of following might then be approxi-
mated by

Eu(l) =a [Epa(t—A) = (= A)|[1—H (2,)] — B H(2n)

where H is the Heaviside step function defined in equation (13) and
Zn=X—2, a(t— A+, (t—A").

The differential equations become nonlinear and although they can be
solved analytically, their solution is clumsy. We have therefore pro-
grammed them for machine solution. The new parameters 3, X, and A’
must be determined experimentally.
EXPERIMENTS AND THEIR INTERPRETATION

In orDER to obtain statistical estimates of certain functions and param-
eters for a preliminary evaluation of the mathematical models previously
mentioned, it was necessary to design and conduct an experimental study
to collect quantitative information regarding driver-car performance in
a two-lane highway in which one car cannot pass another owing to the
high traffic density in the opposite direction.

We now give a brief discussion of the experimental apparatus employed
in the experiment and consider the process of one car following another
without passing. Let x:(f) and z,(¢) be the positions of the lead and fol-
lowing car at a time ¢ so that the spacing between the cars is x;—xy. Also
let the velocities of the respective cars be represented by »; and v, so that
the relative velocity of the two cars is v;—v;.

To measure the spacing and the relative velocity of the two cars, a car
follower, which is shown in Fig. 1, was designed and installed in a test car.
The car follower consists essentially of a reel and a power unit mounted
on a small platform which was fastened on the front bumper of the test
car. Several hundred feet of fine wire were wound on the reel, and the
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end of the wire was fastened on the rear bumper of a lead car. A constant
wire tension was maintained by means of a slipping friction clutch.
Inasmuch as the power unit kept the wire very taut at all times, x;—z;
was measured by the position of the reel at any particular instant, which
depends on the amount of wire stretched between the two cars. This
measurement was made by using a multiple turn potentiometer geared to

Fig. 1. Photograph of car follower showing wire reel and power unit.

a reel shaft. A direct current generator tachometer operating off the
same shaft gave a measure of the rate at which the wire was wound or
unwound, which is proportional to v;—wv;. A fifth wheel attached to the
test car measured v;, while an accelerometer mounted in the car indicated
the car’s longitudinal acceleration which is designated by ay.

The totality of this information, i.e., x;—xy, vi—vy, vy, and a;, was
recorded simultaneously by an oscillograph installed in the back seat of
the test car.

Eight male drivers participated in the study. These people, all em-
ployees of the Research Staff of the General Motors Technical Center,
ranged in age from 24 to 38 years. Prior to testing each subject drove
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the test car, a 1957 Oldsmobile, until he indicated that he was sufficiently
familiar with the car’s response, controls, etc., to operate the car safely
in congested traffic. Fach driver then operated the car behind a lead
car in an actual experimental run on the test track at the General Motors
Technical Center. Testing time was approximately 20 to 30 minutes per
driver.

The directions given to the drivers were simply, “Follow the lead car
at what you consider to be a minimum safe distance at all times.”

Fig. 2. The oscillograph recording shown below identifies the various
curves recorded in the car-following experiments. The top strip isa typical
recording from such an experiment.

These directions were employed in an attempt to produce a driving
situation that would evoke driver behavior similar to that which might be
observed as a person drives in dense traffic. The driver of the lead car,
in all cases, pursued no prescribed program or driving pattern, but ran-
domly varied his speed within the range of 10 to 80 mph and included
several braking actions.

The information recorded on the oscillograph was of the type shown
in Fig. 2. The records were inspected to identify a continuous section in
each record where the test conditions were more or less dynamic. In
other words, sections of the records in which spacing, x;—xs, and speed,
vy, are constant, are trivial and of no interest in the present study.

The aim of our data analysis was to obtain a relation between the ac-
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celeration, ay, the relative velocity, v;—vs, and the spacing, z;—ay, of the
form

a;=fi(vi—vs) +folzi—27). (52)

(Note that we recorded v;—v; on the tracings shown in Fig. 2 for ease of
measurement.) The analysis was made by reading points equally spaced
in time from the relevant parts of the three curves on the experimental
records. The functions f; and f, were first assumed to be linear and by
the method of least squares a multiple correlation coeflicient was derived
from the record of each driver.

It was discovered that the space dependent function fi(x;—z;) did
not contribute significantly to the correlation. Consequently, this func-
tion was dropped from equation (52). Since the choice of a linear form
of fi(v;—vs) with the omission of f; led to relatively high correlation coeffi-
cients in the neighborhood of 0.80-0.90, and in view of the preliminary
character of our experiment, it was deemed unnecessary to examine non-
linear forms for the f’s.

An appreciation of the physical factors involved in the experimentation
dictates that the best linear correlation would be achieved through the
introduction of a time lag A. Hence our statistical problem was to de-
termine the values of the constants b and A, which yield the best least
squares fit to the equation

a; (D) =0b [v,(t—A)—v;(t—A)]. (563)

Correlation procedures for this type of analysis have been recently re-
viewed by MERRILL AND BenNETT.! The relation in equation (53) is
exactly that given in equation (14) and the constant b is identified as
N M.

The lag constant A is the sum of three more elementary lags. We
note that the (v;—v;) can be regarded as stimuli input to the driver, i.e.,
the information which tells him to effect a change in his car’s acceleration.
After an acceleration change is made by the driver of the lead car, the
response of the trailing vehicle depends upon its driver’s perception time,
f1, his response time, f, and the time of the response of the vehicle, .
Inasmuch as each driver-car combination has its own parameters, A and
N/ M, we readily discern the necessity for limiting our present discussion
to the particular eight drivers and the test car used in this experiment.

Since we do not know the individual s, we can let A take on various
values. Then by plotting A versus the correlation coefficient, », we can
identify an optimum for each driver. The constants b and A for a given
driver are those associated with the maximum of his » versus A curve and
are given in Table I.

The fact that the mean value (2AA/M)ay=1,12 is so close to unity
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shows that the model of follow-the-leader given by equation (14) is a
fairly accurate description of the dynamics of a line of cars. Although
the stability condition A/u<1 is violated slightly, the degree of violation
is within the experimental error. Two extra stabilizing influences exist
in actual highway traffic. A given driver generally notices the behavior
of the vehicle two ahead of him as well as that which followshim (through
a rear view mirror or horn signals by his follower).

It would be interesting to extend the experiments here described to
more extended lines of cars to evaluate the degree of coupling of a car with
rear and second nearest front neighbors and to introduce these interactions
into the dynamical equations. Of course new stability conditions would

TABLE I
PARAMETERS OF EQUATION (53)

Driver A (r=max) b=N/M r 2 NA/M

1 I.4 sec 0.74 sec™! 0.87 2.08

2 1.0 0.44 0.90 0.88

3 1.5 0.34 0.86 1.03

4 1.5 0.32 0.49 0.97

5 1.7 0.38 0.74 I.29

6 1.1 0.17 0.86 0.37

7 2.2 0.32 0.82 1.43

8 2.0 0.23 0.83 0.93
Average...... I.55 0.368 1.12

result. Anyone who has done considerable driving notices that the margin
between stable and unstable operation is very narrow. In practice one
would expect that even the added stabilizing influences would yield values
of the appropriate parameters in the dynamical equations, which would
make driving conditions merely a shade on the stable side.

A few conservative drivers interspersed in a chain of cars add tre-
mendously to the stability because they effectively cut the chain by leaving
such large gaps that disturbances that might have grown earlier in the chain
have time to damp out. In dense traffic such gaps are however soon filled
by their more impatient brethren so that their good influence is frequently
nullified.

It is to be emphasized that a phenomenological theory of traffic dy-
namics lumps together a large number of mechanical and human attributes
that can only with great difficulty be handled individually. This, however,
is what makes the use of phenomenological models so powerful in the un-
ravelling of so complicated a set of events.
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TOPICS FOR FUTURE INVESTIGATION IN THE THEORY OF
TRAFFIC FLOW ON THE UNLIMITED HIGHWAY

TuE PREVIOUS sections of this paper have been concerned with dense traf-
fic situations in which no passing is possible. We close with a few remarks
on passing, bunching, and acceleration noise, topics that we hope to dis-
cuss both theoretically and experimentally in future publications.

In the high density limit, passing can be treated as a queuing problem.
Suppose a fixed obstacle exists on a two-lane highway. Cars that accumu-
late behind the obstacle are only able to go around it when appearance
time gaps larger than a certain critical value exist between successive ve-
hicles in the opposite lane. If large gaps (which allow two or more cars
to go around the obstacle per gap) are rare the rate of growth of the line
behind the obstacle and the reduction in traffic flow current caused by
the obstacle can be discussed by standard queuing theory. The distribu-
tion of service times of the queue is the distribution of time intervals be-
tween the required long gaps. The distribution of appearance times is of
course that of the time intervals between the appearance of successive cars
at the obstacle. A slow driver is a moving obstacle and can be treated in
the same manner as a fixed one through the use of a moving coordinate
system. When very large gaps are common so that two or more cars may
occasionally pass the obstacle together the queuing theory becomes more
complicated. Queuing theory is also applicable to the analysis of the effect
of a bad curve or very steep grade on traffic flow.

An alternative approach to the passing problem can be made by setting
up continuum flow equations for each lane, including cross terms which
characterize the interactions between the lanes.

Another effect caused by the existence of a speed distribution in medium
density traffic conditions is bunching. Everyone has seen clusters of cars
form and evaporate. It would be interesting to observe the distribution
of cluster sizes as a function of mean speed and density and to find the gel
point at which clusters congeal to form a jammed traffic situation.

The estimation of the state of the traffic on an open road is a highly
personal matter. The driver who is satisfied in maintaining a speed of
35 mph while his fellow travelers are racing along at 70 mph considers them
to be lunatics. The speedier drivers consider our snail to be a menace.
A resistance to flow caused by speed dispersion can be defined in a different
subjective way for each driver. The mean resistance averaged over all
drivers might serve as a useful parameter of the traffic stream. A quan-
tity sensitive to the resistance to flow is the acceleration noise experienced
by a given vehicle. We define this noise as the dispersion in the accelera-
tion distribution function. The only measurement we have of this quan-
tity at the moment is that obtained from the records of the follow-the-leader
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experiments discussed earlier. The acceleration distributions are essen-
tially Gaussian with mean zero and dispersion of the order of ~0.15 g.
We plan to make more extensive measurements of this quantity under real
and well-specified highway conditions.

Finally, a car moving with the average speed of the stream would have a
very narrow acceleration distribution pattern, while one that moves faster
than the average stream speed would be expected to have a broadened
acceleration distribution that would increase with the speed differential.
One might try to relate the resistance of the stream to the acceleration noise
of its component cars. A car moving with a speed lower than the stream
average will cause a reduction of the stream velocity, the magnitude of
the reduction increasing with the density.
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