Math 4200/5200 -Differential Equations-Qualitative Theory

Homework #2 Due Friday Feb 10

1. Consider

$$\dot{x} = f(x, \alpha, \epsilon) = f_0(x, \alpha) + \epsilon f_1(x, \alpha, \epsilon), \quad x, \alpha, \epsilon \in \mathbb{R}$$

where $f_0(0,0) = 0$, $f_{0,x}(0,0) = 0$, $f_{0,\alpha}(0,0) \neq 0$, $f_{0,xx}(0,0) \neq 0$ and $f_1(x,\alpha,\epsilon)$ is an arbitrary (sufficiently smooth) function. For $\epsilon \neq 0$, this can be viewed as a perturbed fold bifurcation that occurs when $\epsilon = 0$.

- (a) Use the implicit function theorem to prove that for all sufficiently small ϵ , there is a nonhyperbolic equilibrium $x = x^0(\epsilon)$ when $\alpha = \alpha^0(\epsilon)$, where x^0 and α^0 are smooth functions with $x^0(0) = 0$ and $\alpha^0(0) = 0$. Thus the bifurcation conditions for a fold bifurcation occur along a curve $\alpha^0(\epsilon)$ in the $\alpha\epsilon$ plane
- (b) Show that $f_{\alpha}(x^{0}(\epsilon), \alpha^{0}(\epsilon), \epsilon)$ and $f_{xx}(x^{0}(\epsilon), \alpha^{0}(\epsilon), \epsilon)$ have the same signs as $f_{0,\alpha}(0,0)$ and $f_{0,xx}(0,0)$ respectively for sufficiently small ϵ . Thus for fixed $\epsilon \neq 0$, the perturbed family undergoes a fold bifurcation as α increase past $\alpha^{0}(\epsilon)$, of the same type as the unperturbed problem as α increases past 0. Draw a bifurcation diagram in the $\alpha\epsilon$ plane indicating the phase portraits, in the case $f_{0,\alpha}(0,0) > 0$, $f_{0,xx}(0,0) > 0$.
- 2. The Transcritical bifurcation. Consider

$$\dot{x} = f(x, \alpha), \quad x \in \mathbb{R}, \, \alpha \in \mathbb{R}$$

where f(0,0) = 0 and $f_x(0,0) = 0$. In addition we assume the constraint

$$f(0,\alpha) = 0$$

for all α .

(a) If f satisfies nondegeneracy conditions

$$f_{x\alpha}(0,0) \neq 0 \quad f_{xx}(0,0) \neq 0$$
,

show that $\dot{x} = f(x, \alpha)$ if locally topologically equivalent to

$$\dot{y} = \beta y + \sigma y^2 \,,$$

where $\sigma = \pm 1$. Draw all the possible branching diagrams of $\dot{x} = f(x, \alpha)$, depending on the signs of $f_{x\alpha}(0,0)$ and $f_{xx}(0,0)$. The bifurcation which occurs is called transcritical.

- (b) Show that by choosing an appropriate constant $y_0(\beta)$, the change of variables $y = y_0(\beta) + u$ takes $\dot{y} = \beta y + \sigma y^2$ into a family of the form $\dot{u} = \gamma + \sigma u^2$. What is the relation between the parameters β and γ ? How can the transcritical bifurcation be described in terms of a one-parameter path in the bifurcation diagram of the fold bifurcation?
- (c) Following the ideas of question 1, show that transcritical bifurcations persist under all sufficiently small perturbations satisfying the constraint that x = 0 is an equilibrium for all parameter values.
- (d) Show that transcritical bifurcations do not persist under all perturbations, by giving an explicit example of an arbitrary small perturbation that destroys a particular transcritical bifurcation. Draw branching diagrams to illustrate the structural instability of the transcritical bifurcation.

3. Consider the logistic map, a simple population dynhamics model:

$$x_{n+1} = f(x_n, \alpha) = \alpha x_n (1 - x_n), \ x_n \in \mathbb{R}, \ \alpha \in \mathbb{R}.$$

- (a) Show that there is a flip bifurcation when $\alpha = 3$. As α increases past three, a stable fixed point becomes unstable, while a stable period two cycle bifurcates from this point.
- (b) Show that there is a fold bifurcation of period 3 cycles when $\alpha = 1 + \sqrt{8}$. As α increases past $1 + \sqrt{8}$, a stable and unstable pair of period 3 cycles is generated.

Note: For students enrolled in 4200, questions 2 b), c) and d) are bonus questions.