## Math 4020/5020 - Analytic Functions

Homework #1 Due Jan 23

1. Determine the different values of the following logarithms:  $\log(1) - \log(-1/2) - \log(-1+i)$ 

$$\log\left(\frac{a-ib}{a+ib}\right)$$

2. Determine all the roots of,

 $\sin(z) = i \qquad \cos(z) = 2 \qquad \cot(z) = 1 + i$ You may want to use  $\sin(z) = \frac{e^{iz} - e^{-iz}}{2i} \dots$  to evaluate the functions.

- 3. Assume w = f(z) = u(x, y) + iv(x, y) is analytic in some domain D. Show the sets of curves  $u(x, y) = c_1$  and  $v(x, y) = c_2$  intersect orthogonally.
- 4. Show the mapping  $w = z^{\alpha+i\beta}$  maps the rays  $\arg(z) = c_1$  and the circles  $|z| = c_2$  into mutually orthogonal logarithmic spirals.
- 5. Use residues to calculate

$$\int_{-\infty}^{\infty} \frac{x \, dx}{(x^2+1)(x^2+2x+2)}$$


6. Show that

$$\int_0^\infty \frac{dx}{\sqrt{x(x^2+1)}} = \frac{\pi}{\sqrt{2}}$$

by integrating an appropriate branch of the multi-valued function

$$f(z) = \frac{e^{(-1/2)\ln(z)}}{z^2 + 1}$$

over the contour below as  $R \to \infty$  and  $r \to 0$ .



For students of 4020, question 4 is a bonus worth an extra 5%.