Math 4020/5020 - Analytic Functions

Homework #2 Due Feb 11

- 1. Find the number of zeros of the polynomial f(z) in the first quadrant, where
 - (a) $f(z) = z^3 3z + 6$
 - (b) $f(z) = z^9 + 5z^2 + 3$
- 2. Find the number of zeros of f(z) in the given annulus:
 - (a) $f(z) = z^4 2z 2$ in $\frac{1}{2} < |z| < \frac{3}{2}$, (b) $f(z) = ze^z - \frac{1}{4}$ in 0 < |z| < 2.
- 3. Let f and g be analytic inside a simple closed curve γ and suppose that $f(z) \neq 0$ inside of γ . Show that if $|f(z)| \geq |g(z)|$ for all $z \in \gamma$ then $|f(z)| \geq |g(z)|$ for all z inside of γ . Give an example to show that the assumption that $f(z) \neq 0$ inside of γ is necessary. (Note: you will have to consider what can happen if f(z) = 0 on γ .)
- 4. Find a linear fractional transform that maps:
 - (a) the circle |z| = 1 onto the line Re((1+i)w) = 0.
 - (b) the circle |z| = 1 onto the circle |w 1| = 1.
 - (c) the real axis onto the line Re(w) = 1/2.
- 5. Find the image of the following sets under $w = \frac{z-i}{z+i}$:
 - (a) the real axis.
 - (b) the circle |z| = 1.
 - (c) the imaginary axis.
- 6. (a) Find a conformal mapping of the region $D = \{z : |z 1| < \sqrt{2}, |z + 1| < \sqrt{2}\}$ onto the open first quadrant.
 - (b) Find a conformal mapping of D onto the upper half plane. This can't be a linear fractional mapping. Why?
- 7. Find a conformal mapping of the quarter circle $D = \{z = x + iy : |z| < 1, x > 0, y > 0\}$ onto the upper half plane. This can't be a linear fractional mapping either. Why?

For students of 4020, question 3 is a bonus worth an extra 5%.