
Math 4020/5020 - Analytic Functions
Solutions

1. An arc of θ0 radians in a circle is kept at temperature T1 wile the remainder of the circle is
kept at T2. By mapping into the upper half plane, find the temperature distribution inside
the circle.
Let the arc to be kept at T1 be |θ| < θ0

2
and α = eiθ0/2.

α

α−1

T1

T2

We map |z| < 1 to the upper half plane with a linear fractional transform by sending

α−1 → 0 ,

1 → 1 ,

α → ∞ .

so,

f(z) = β
z − α−1

z − α

where f(1) = β
α
α−1

1−α
= 1, so β = −α. We can then write,

f(z) =
1− αz

z − α

In the w-plane, a suitable function is,

ψ(w) = T1 + (T2 − T1)
1

π
Arg(w)

So the solution is the z-plane is given by

T (z) = T1 + (T2 − T1) Arg

(

1− αz

z − α

)

,

where α = eiθ0/2.

2. Let D be the quartercircle {z : |z| < 1, x > 0, y > 0}. Find the electrostatic potential φ in
D (harmonic in D) with the following boundary conditions: φ = 0 on the real axis, φ = 1 on
the imaginary axis and ∂φ

∂n
= 0 on the circular part (no flux).

We consider the following sequence of maps
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A

B C

1

0
b

A B C1 0

z2 =
1+z1
1−z1

b b

A B C= ∞1 0

b b

A B C= ∞1 0

z3 = z22

bb

C A B= ∞

-1 1

10

z4 =
1+z3
1−z3

C A

0 1

−π
2

π
2

z1 = z2

Insulated

w = sin−1(z4)

The mapping z4 =
1+z3
1−z3

is needed to move the insulated section on the boundary to the interval

[−1, 1]. After working through the various maps we get z4 =
1+z4

−2z2
and then the solution is

T =
1

2
+

1

π
sin−1

(

1 + z4

−2z2

)

.

3. Find a stream function and velocity potential function for flows with the following velocity
fields:

(a) f = z̄.
The complex potential G satisfies G′(z) = z, so G(z) = z2

2
. The velocity potential is

then Φ = xy and the stream function is Ψ = (x2 − y2)/2 where z = x+ iy.

(b) f = sin(z̄).

We note that sin(z) = sin(z) (use the definition sin(z) = eiz−e−iz

2i
), then we have the com-

plex potential satisfies G′(z) = sin(z), so G(z) = − cos(z) and here Φ = − cos(x) cosh(y)
and Ψ = sin(x) sinh(y).

(c) f = z̄−1

z̄+1

Here G satisfies G′(z) = z−1

z+1
, so G(z) = z−2 log(z+1) and Φ = x−2 log(

√

(x+ 1)2 + y2)
and Ψ = y − 2Arg(z + 1) or y − 2 arctan(y/x+ 1).

Note: If f = u+ iv the velocity of the flow will be given by the vector (u, v).

4. Using the fact that the Joukowski mapping w = z + 1

z
maps circles |z| = r > 1 to ellipses,

find the complex velocity potential for flow past an ellipse x2

a2
+ y2

b2
= 1, where a > b with no

circulation.
We want the flow with c = 0 around K = {x2

a2
+ y2

b2
≤ 1}. So, we to find a map which sends the

ellipse to the unit circle. We may then use the flow around the unit circle with no circulation.
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We know that w = z + 1

z
maps the circle |z| = r to the ellipse

(

u

r + 1

r

)2

+

(

v

r − 1

r

)2

= 1

First we note that the distance between the foci squared c2 =
(

r + 1

r

)2 −
(

r − 1

r

)2
= 4 for

this ellipse. So before we can use this transform, we must scale our ellipse to have c = 2 So if
a > b > 0, then we let c =

√
a2 − b2 and we can set r > 1 such that,

2a

c
= r +

1

r
,

2b

c
= r − 1

r
.

So r = a+b
c

and 1

r
= a−b

c
. This is consistent since c2 = a2− b2. With this choice of r, w = z+ 1

z

will map |z| = r to the correct ellipse.

We will need a mapping going the other way. If we solve for z, we get z = w±
√
w2−4

2
. We have

two roots since w = f(z) will always map z and 1

z
to the same point. Since one of z and 1

z

will be inside the unit circle and one will be outside, the mapping is 1-1 on the domain of
interest. If we choose the correct branch of

√
w2 − 4, we can construct a consistent inverse.

We can do this by writing
√
w2 − 4 = (w − 2)1/2(w + 2)1/2 and restricting the arguments of

w ± 2 to 0 < Arg(w ± 2) < 2π. With this choice,
√
w2 − 4 is defined and consistent except

for a branch cut joining −2 to 2. The inverse of f(z) is then z = w+
√
w2−4

2
.

We are now ready to construct our mapping, h(z), from the ellipse to the unit circle. We will
use several stages to get the scaling right.

z-plane z1 =
2

c
z z2 = 1/2(z1 +

√

z21 − 4) w = c
a+b

z2

Putting it all together, we have

w =
c

a+ b
z2 ,

=
c

2(a+ b)
(z1 +

√

z21 − 4) ,

=
c

2(a+ b)

(

2

c
z +

√

4

c2
z2 − 4

)

,

=
z +

√
z2 − c2

a+ b
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Now to find a flow with no circulation, we us G(w) = λw + λ̄
w

as the flow around the unit
disc. Now we just use our mapping to the z-plane to get

G(z) = λ
z +

√
z2 − c2

a+ b
+

λ̄(a+ b)

z +
√
z2 − c2

We can further simplify to get,

G(z) = λ
z +

√
z2 − c2

a+ b
+
λ̄(a+ b)(z −

√
z2 − c2)

c2

5. Let w = f(z) be a non-constant analytic function mapping a domain D to the domain E.
Suppose tht ψ is a smooth function on E and that φ is defined on D by φ(z) = ψ(f(z)). Show
that φxx + φyy = |f ′(z)|2 (ψuu + ψvv).
φ(x, y) = ψ(u(x, y), v(x, y)), where f = u+ iv. So

φx = ψuux + ψvvx ,

φy = ψuuy + ψvvy ,

φxx = ψuuu
2

x + ψvvv
2

x + ψuuxx + ψvvxx ,

φyy = ψuuu
2

y + ψvvv
2

y + ψuuyy + ψvvyy .

Now using ∆u = ∆v = 0, we have

∆φ = ψuu(u
2

x + y2y) + ψvv(v
2

x + v2y) .

But f ′(z) = ux + ivx = ux +−iuy = vy + ivx, and |f ′(z)|2 = u2x + u2y = v2y + v2x, which gives us
the required result.

6. Find the electrostatic potential between the two cylinders with cross-sections {z : |z−2| = 1}
and {z : |z + 2| = 1} if the first cylinder has charge Q1 and the second Q2. This question is a
bonus for those enrolled in math4040.
We must find a map between the following two regions.

First we translate the left circle to the unit circle centered at the origin with z1 = z+2. Now
a transform of the w = z1−a

1−az1
with |a| > 1 will fix the unit circle and map the circle on the

right to another circle. We choose a so that z1 = 3 gets mapped to w = R and z1 = 5 gets
mapped to w = −R. Then the circles will be concentric. w(3) = −w(5) = R reduces to

3− a

1− 3a
= − 5− a

1− 5a
,

4



or a = 2 +
√
3 (2−

√
3 < 0). Then R = 7− 4

√
3. In the w-plane the solution is given

ψ(w) = V2 +
V2 − V1
log(r)

log |w| .

Finally in the z-plane we have

ψ(w) = V2 +
V2 − V1
log(r)

log

∣

∣

∣

∣

z + 2− a

1− a(z + 2)

∣

∣

∣

∣

.

5


