Math 4220/5220 -Introduction to PDE's

Take Home Exam – Due April 17

- 1. Solve $xu_t + uu_x = 0$ with u(x, 0) = x. Hint: change variables $y = x^2$.
- 2. Solve the wave equation in three dimensions:

$$u_{tt} = c^{2}(u_{xx} + u_{yy} + u_{zz})$$
$$u(\vec{x}, 0) = 0,$$
$$u_{t}(\vec{x}, 0) = x^{2} + y^{2} + z^{2}.$$

,

Hint: You should consider the radially symmetric Laplacian operator.

- 3. Find all three dimensional plane waves; that is, all solutions of the form $u(\vec{x}, t) = f(\vec{k} \cdot \vec{x} ct)$, where \vec{k} is a fixed vector and f is a scalar function.
- 4. Find the Green's function for the first quadrant $\{(x, y)|x > 0, y > 0\}$. Use your answer to solve the Dirichlet problem

$$u_{xx} + u_{yy} = 0 \text{ in } Q,$$

 $u(0, y) = g(y),$
 $u(x, 0) = h(x).$

5. Solve the following heat equation:

$$\begin{split} u_t - u_{xx} &= 0 \,, \quad 0 < x < L \,, \quad t > 0 \,, \\ u(x,0) &= \phi(x) \,, \\ u(0,t) &= a + ct \,, \quad u(L,t) = b + ct \,. \end{split}$$

where $\phi(0) = a$ and $\phi(L) = b$.

6. Find $u(\pi, t)$ and $u(-\pi, t)$ for $t = 0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}, 2\pi$ where u satisfies

$$\begin{split} \frac{\partial^2 u}{\partial x^2} &- \frac{\partial^2 u}{\partial t^2} = 0 \,, \quad x \in \mathbb{R} \,, \quad t > 0 \,, \\ & u(x,0) = \phi(x) \,, \\ & \frac{\partial u}{\partial t}(x,0) = \psi(x) \,, \end{split}$$

where

(a)

$$\phi(x) = \begin{cases} \cos(x) & |x| < \frac{\pi}{2} \\ 0 & |x| \ge \frac{\pi}{2} \end{cases}$$
$$\psi(x) = 0.$$

(b)

$$\psi(x) = \begin{cases} \cos(x) & |x| < \frac{\pi}{2} \\ 0 & |x| \ge \frac{\pi}{2} \end{cases}$$
$$\phi(x) = 0.$$

7. Let u satisfy,

$$\begin{split} \frac{\partial^2 u}{\partial x^2} &- \frac{\partial^2 u}{\partial t^2} = 0 \,, \quad x \in \mathbb{R} \,, \quad t > 0 \,, \\ & u(x,0) = \phi(x) \,, \\ & \frac{\partial u}{\partial t}(x,0) = \psi(x) \,, \end{split}$$

where $\phi(x)$ and $\psi(x)$ have compact support (are identically 0 for |x| > M for some M). Show

$$\int_{-\infty}^{\infty} \frac{1}{2} \left(\left(\frac{\partial u}{\partial x} \right)^2 + \left(\frac{\partial u}{\partial t} \right)^2 \right) \, dx$$

is constant in time (i.e. energy is conserved). (Hint: you may want to $\operatorname{consider}\left(\frac{\partial}{\partial x}\left(\frac{\partial u}{\partial t}\frac{\partial u}{\partial x}\right)\right)$

- 8. (a) Let U(x) be a continuous differentiable function and w_i be and approximation to $U(x_i)$ where $x_i = a + ih$ for some a, h > 0 and integer i. Use the Taylor series expansions of $U(x_i \pm h)$ and $U(x_i \pm 2h)$ to construct an approximation to $U''(x_i)$ in terms of w_{i-2} , w_{i-1}, w_i, w_{i+1} and w_{i+2} with error term of order $O(h^4)$ (here w_i is the approximation to $U(x_i)$).
 - (b) Use the result from a) to find a time stepping method for

$$u_{tt} = c^2 u_{xx}$$
.
 $u(0,t) = u(1,t) = 0$.

You may assume that 4 previous time steps are already given. Denote the time step as k and the space step as h.

Note: Questions 7 and 3 are a bonus for students enrolled in 4220. The bonus questions may add an additional 5% to your mark.