
Math 4220/5220 -Introduction to PDE’s
Homework #2 Solutions

1. Use separation of variables to solve the non-homogeneous problem,

φt = a2φxx + 1 for 0 < x < L , t > 0 ,

for φ(x, 0) = 0, φ(0, t) = t, φx(L, t) = −cφ(L, t) where c > 0 is a constant. (Note: you won’t
be able to solve for the eigenvalues exactly).
The first step is to make the boundary conditions homogeneous. To do this, we write φ(x, t) =
u(x, t) + z(x, t). We will want u(0, t) = 0 and ux(L, t) = −cu(L, t) in order for us to have an
eigenvalue problem. First, u(0, t) = φ(0, t) − z(0, t) = t − z(0, t) = 0 So we have z(0, t) = t.
The other boundary condition is a little more complex. We will want the following:

ux(L, t) = −cu(L, t) ,

φx(L, t) − zx(L, t) = −c(φ(L, t) − z(L, t)) ,

zx(L, t) = −cz(L, t) .

So we have two conditions on z. We will guess the form of z to be, z(x, t) = a(t) + b(t)x. The
first condition gives us a(t) = t. Now we apply the second condition,

b(t) = −c(t + b(t)L) ,

b(t) =
−ct

1 + cL
.

So,

z(x, t) = t − ct

1 + cL
x .

We need to find the equation that u will satisfy.

φt = ut + zt = ut + 1 − c

1 + cL
x ,

φxx = uxx ,

φ(x, 0) = u(x, 0) = 0 .

So putting it all together, we must now solve

ut = a2uxx +
c

1 + cL
x ,

u(x, 0) = 0 ,

u(0, t) = 0 ,

ux(L, t) = −cu(L, t) .

We want to find the eigenvalues of the homogeneous problems so that we may guess the form
of the solution. To that end we consider the eigenvalue problem,

X ′′(x) = −λ2X(x) ,

X(0) = 0 , X ′(L) = −cX(L) .
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With this choice of eigenvalue problem the equation for the associated time component is,

T ′(t) = −a2λ2T (t)

We can solve the eigenvalue problem to get the eigenvalues are solutions to the transcendental
equation,

λn = −c tan(λnL)

The eigenfunctions are then given by sin(λnx). We now guess the form of the solution to be
given by,

u(x, t) =
∞

∑

n=1

αn(t) sin(λnx) . (1)

When we substitute this ansatz into the equation, we will wish to have all of the terms inside
of the summation. So we will now write the function W (x) = c

1+cL
x as an eigenfunction

expansion.

W (x) =
∞

∑

n=1

wn sin(λnx) ,

where

wn =
2

L

∫ L

0

cx sin(λnx)

1 + cL
dx =

2c(sin(λnL) − λnL cos(λnL))

λ2
nL(1 + cL)

. (2)

Plugging (2) and (1) into the equation we get,

∞
∑

n=1

(αn(t)′ + a2λ2
nαn(t) − wn) sin(λnx) = 0 .

Thus, αn(t)′ + a2λ2
nαn(t)−wn = 0 for each n. We can now apply the initial conditions which

give us αn(0) = 0 for all n. The solution for αn is given by,

αn(t) =
wn

a2λ2
n

(

1 − e−a2λ2
nt

)

,

Thus,

u(x, t) =
∞

∑

n=1

wn

a2λ2
n

(

1 − e−a2λ2
nt

)

sin(λnx) ,

and finally,

φ(x, t) =
∞

∑

n=1

wn

a2λ2
n

(

1 − e−a2λ2
nt

)

sin(λnx) + t − cxt

1 + cL
,

where wn and λn are as previously defined.

2. Show that the equation

ut = uxx + Q(x) , 0 ≤ x ≤ L , t > 0 ,

with the boundary conditions ux(0) = ux(L) = 0 has no equilibrium solution unless
∫ L

0
Q(x)dx =

0. In other words show an insulated bar, to which energy is being added (or subtracted), can
not obtain a thermal equilibrium.
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This question if actually quite strait forward. For an equilibrium solution, we set ut = 0. So
we have uxx + Q(x) = 0. We integrate this from 0 to L,

∫ L

0

uxx dx = −
∫ L

0

Q(x) dx ,

ux|L0 = −
∫ L

0

Q(x) dx ,

0 = −
∫ L

0

Q(x) dx .

So for an equilibrium (or steady-state) to exist, we must require
∫ L

0
Q(x) dx = 0

3. Find the solution, u(x, y, t), to the following PDE:

ut = k(uxx + uyy) , 0 ≤ x ≤ 1 , 0 ≤ y ≤ 1 , t > 0 ,

with the boundary conditions ux(0, y, t) = ux(1, y, t) = 0, u(x, 0, t) = 0, u(x, 1, t) = 1 and
initial conditions u(x, y, 0) = φ(x, y). Note: you may leave your answer in the form of
an infinite series, but be sure to define all the terms of the series in terms of the
given functions.
The first thing we must do is to make the boundary conditions homogeneous. We thus let
u(x, y, t) = v(x, y, t) + z(x, y, t) We want to find a function z such that v will satisfy a similar
PDE with homogeneous boundary conditions. As in question 1, this will result in the following
conditions for z:

zx(0, y, t) = zx(1, y, t) = 0 ,

z(x, 0, t) = 0 ,

z(x, 1, t) = 1 .

After looking at these conditions, I will try z(x, y, t) = a + by. With this choice we find that
z(x, y, t) = y.
Now v will satisfy the following PDE:

vt = k(vxx + vyy) , 0 ≤ x ≤ 1 , 0 ≤ y ≤ 1 , t > 0 ,

vx(0, y, t) = vx(1, y, t) = 0 ,

v(x, 0, t) = v(x, 1, t) = 0 ,

v(x, y, 0) = φ(x, y) − y .

Since I have already solved similar problems in class, I will just write out the form of the
solution.

v(x, y, t) =
∞

∑

m=0

∞
∑

n=1

Cmne
−(n2+m2)π2kt cos(mπx) sin(nπy) .

Note that we must include the terms for which m = 0 as these are still non-trivial solutions
to the eigenvalue problem. Now we use the initial conditions to find,

Cmn = 4

∫ 1

0

∫ 1

0

(φ(x, y) − y) sin(nπy) cos(mπx) dx dy .
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Finally we have,

u(x, y, t) =
∞

∑

m=0

∞
∑

n=1

Cmne
−(n2+m2)π2kt sin(nπy) cos(mπx) + y

4. Use the Rayleigh quotient to obtain an upper bound for the lowest eigenvalue of

(a) d2φ

dx2 + (λ − x2)φ = 0 with dφ

dx
(0) = 0 and φ(1) = 0.

First we must come up with a test function which satisfies the boundary conditions. To
keep things simple we can use u = x2 − 1. The Rayleigh quotient is given by,

RQ(u) = −
∫ 1

0
uLu dx

∫ 1

0
u2 dx

=
−udu

dx
|10 +

∫ 1

0
(du

dx
)2 + x2u2 dx

∫ 1

0
u2 dx

=
37

14
.

So we have λ1 ≤ 37
14

.

(b) d2φ

dx2 + (λ − x)φ = 0 with dφ

dx
(0) = 0 and dφ

dx
(1) + φ(1) = 0.

For this problem I will let u = ax2+bx+c. dφ

dx
(0) = 0 tells us that b = 0. dφ

dx
(1)+φ(1) = 0

tells us that 2a + c + a + c = 0. If we let c = 3 that a = 1. So we will use u = x2 − 3.
Now

RQ(u) = −
∫ 1

0
uLu dx

∫ 1

0
u2 dx

=
−udu

dx
|10 +

∫ 1

0
(du

dx
)2 + xu2 dx

∫ 1

0
u2 dx

=
85

72
.

5. Consider the eigenvalue problem,

d2φ

dx2
+ (λ − x2)φ = 0 ,

subject to dφ

dx
(0) = 0 and dφ

dx
(1) = 0. Show that λ > 0 (be sure to show that λ 6= 0).

We use the Rayleigh quotient. We pick a function u which satisfies the boundary conditions
and we have,

λ1 ≤ RQ(u) ,

= −
∫ 1

0
uLu dx

∫ 1

0
u2 dx

=
−udu

dx
|10 +

∫ 1

0
(du

dx
)2 + x2u2 dx

∫ 1

0
u2 dx

=

∫ 1

0
(du

dx
)2 + x2u2 dx

∫ 1

0
u2 dx

.
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First,we note that RQ(u) ≥ 0 since each all of the terms in the integrand is greater than or
equal to 0. Now all we have to show is that the integrand cannot be identically 0.
If the integrand is identically zero then,

(
du

dx
)2 = −x2u2

So u = Ce±i x
2

2 . The only way to satisfy the boundary conditions is C = 0 so the Rayleigh
quotient must be strictly greater than 0 and we are done.

6. A rod occupies the interval 1 < x < 2. The thermal conductivity depends on x in such a way
that the temperature φ(x, t) satisfies the equation,

φt = A2(x2φx)x

where A is a constant. For φ(1, t) = 0 = φ(2, t) for t > 0 and φ(x, 0) = f(x) for 1 < x < 2,
show that the appropriate eigenfunctions βn are,

βn(x) =
1√
x

sin

(

πn ln x

ln(2)

)

and work out the separation of variables solution of this problem.
First we find guess that φ(x, t) = X(x)T (t) and plug in to get the usual,

T ′

A2T
= x2X ′′ + 2xX ′X = −λ .

First lets solve the eigenfunction problem we get from the X equation.

x2X ′′ + 2xX + λX = 0 ,

is an Euler equation. We make the guess X = xα, and plug it in. We find that α2 + α + λ, so
α = −1±

√
1−4λ

2
. We must consider three cases. First if 1 − 4λ > 0 then,

X = Axα1 + Bxα2 ,

where α1,2 are, −1−
√

1−4λ
2

and −1+
√

1−4λ
2

. If we apply the boundary condition at x = 1, we get
A = −B. Then we apply the boundary condition at 2 and we find A(2α1 − 2α2) = 0. Since
α1 6= α2, we have A = 0, so we may ignore this case.
The next case is 1 − 4λ = 0, or α1 = α2 = α. For this case, the solution to the equation is,

X = C1x
α + C2x

α ln(x) .

Now X(1) = C1 = 0 and X(2) = C22
α ln(2) = 0. So C2 = 0 as well and we can disregard this

case. The only remain case is for α1,2 to be complex conjugates, α1,2 = −1
2
± i

√
4λ−1
2

. We can
take the plus case for now. So we can write one solution of the problem as,

X(x) = x− 1

2
+i

√

4λ−1

2 ,

= eln(x−
1
2
+i

√

4λ−1
2 ) ,

= e(− 1

2
+i

√

4λ−1

2
) ln(x) ,

=
1√
x
ei

√

4λ−1

2
ln(x) .
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Using Euler’s identity, we can write two independent solutions as, X1 = 1√
x

cos(
√

4λ−1
2

ln(x))

and X2 = 1√
x

sin(
√

4λ−1
2

ln(x)). The general solutions is just X(x) = AX1(x) + BX2(x). We
apply the boundary condition at x = 1 and find A = 0, now we apply the boundary condition
at x = 2 and get,

1√
2

sin(

√
4λ − 1

2
ln(2)) = 0 .

So
√

4λ−1
2

ln(2) = nπ, n = 1, . . .. This gives us,

λn =
n2π2

ln2(2)
+

1

4
,

with eigenfunction, βn(x). To get the separation of variables solution, we solve the time
equation T ′

n + λnA
2Tn = 0, which gives us Tn(x) = Tn(0)e−λnA2t with λn defined above. We

will then guess our solution to be in the form,

φ(x, t) =
∞

∑

n=1

Cne
−λnA2tβn(x) .

Now we use the initial conditions to solve for the Cn’s. Before we do that, we note that the
βn’s haven’t been normalized. So,

Cn =
1

‖βn‖2
2

∫ 2

1

f(x)βn(x) dx

In this case it is very easy to find ‖βn‖2
2. It is

‖βn‖2
2 =

∫ 2

1

1

x
sin2

(

πn ln x

ln(2)

)

dx

=
ln(2)

2

So,

Cn =
2

ln(2)

∫ 2

1

f(x)βn(x) dx
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