MATH/CSCI 2113

Solutions to assignment 2

- Find the successors of the following permutations in a lexicographic ordering: (a) 15432 (b) 54312 (c) 35421.
 - (a) 21345 (b) 54321 (c) 41235
- 2. (a) Generate all rearrangements of the word BOOST, in lexicographic order (where letters that come earlier in the alphabet are smallest).

Hint: you can use the same method as for the generation of permutations in lex order.

1.BOOST	6.BSOTO	11.0BOST	16.0BTSO	
2.BOOTS	7.BSTOO	12.0BOTS	17.00BST	
3.BOTOS	8.BTOOS	13.0BSOT	18.00BTS	
4.BOTSO	9.BTOSO	14.0BSTO	19.00SBT	
5.BSOOT	10.BTSOO	15.0BTOS	20.00STB	etc

(b) Check that the number of rearrangements you found coincides with the formula for the number of rearrangements as learned last week.

$$\frac{5!}{1!2!1!1!} = 60$$

3. (a) Determine the number of nonnegative integer solutions to the pair of equations:

$$\begin{array}{rcl} x_1 + x_2 + x_3 & = 6 \\ x_1 + x_2 + x_3 + x_4 + x_5 & = 15 \end{array}$$

There are C(6+3-1,6) solutions to the first equation, and C(9+2-1,9) solutions to the equation $x_4+x_5=9$. Total:C(6+3-1,6)C(9+2-1,9)=280 solutions.

(b) How many of these solutions have $x_3 \neq 3$? (*Hint: count by complement.*)

Solutions with $x_3 = 3$: C(3 + 2 - 1, 3)C(9 + 2 - 1, 6) = 40. With $x_3 \neq 3$: 280 - 40 = 240. 4. Describe an algorithm which, on input of two integers k and n, where $1 \le k \le n$, generates all subsets of size k of the set $\{1, 2, 3, \ldots, n\}$. Give a precise, step-by-step description of your algorithm. You may also use pseudocode.

```
procedure combination(r,n)
   for i := 1 to r do s_i := i
   print s_1 s_2 \ldots s_n
   for i := 2 to C(n, r) do
   begin
      m := r
      max_{val} := n
      while s_m = max_{val} \operatorname{do}
      begin
         m := m - 1
         max_{val} := max_{val} - 1
      end
      s_m := s_m + 1
      for j := m + 1 to r do s_j := s_{j-1} + 1
      print s_1 s_2 \ldots s_n
   end
end combination
```

5. Determine how many integer solutions there are to the equation

$$x_1 + x_2 + x_3 + x_4 = 19,$$

if

(a) $0 \le x_i < 8$ for $1 \le i \le 4$,

C(19+4-1,3) - 4C(11+4-1,3) + 6C(3+4-1,3) - 0 + 0

(b) $0 \le x_1 \le 5, 0 \le x_2 \le 6, 3 \le x_3 \le 7, 3 \le x_4 \le 8$. This is equivalent to finding all solutions of $x_1 + x_2 + y_3 + y_4 = 13$, where $0 \le x_1 \le 5, 0 \le x_2 \le 6, 0 \le y_3 \le 4, 0 \le y_4 \le 5$ (take $y_3 = x_3 - 3$ and $y_4 = x_4 - 3$). C(16, 3) - C(9, 3) - 2C(10, 3) - C(11, 3) + 2C(3, 3) + 2C(4, 3) + 2C(5, 3) - 0 + 0