
MATH 3330 — Applied Graph Theory
Assignment 1 — Solutions

(1.1.19) Determine, with the methods shown in class, whether each of the fol-
lowing sequences is graphic. If it is, draw a graph that realizes the
sequence.

a. (7,6,6,5,4,3,2,1) b.(5,5,5,4,2,1,1,1)
c. (7,7,6,5,4,4,3,2) d.(5,5,4,4,2,2,1,1)

Use the reduction method shown in class, and in the text, page 9. The
sequences from a. and b. are not graphic, the others are. Note that
you were required to draw the whole graph realizing the sequence (in
one picture). 2 points

(1.1.26,27) A pair of sequences < a1, . . . , an > and < b1, . . . , bn > is digraphic
if there exists a simple digraph (digraph with no multi-edges or self-
loops) with vertex-set {v1, . . . , vn} so that outdegree(vi) = ai and
indegree(vi = bi) for i = 1, . . . , n.

(a) Note first that the digraph must be simple, so no loops or multiple
edges are allowed (two arcs in opposite directions between a pair of
vertices is allowed). Many students gave a method which would
lead to a digraph which is not necessarily simple. A reduction
method to determine whether the pair of sequences is digraphic
can be developed along the same lines as the method used in
the first question to see whether a sequence is graphic. Namely:
Given sequences < a1, a2, . . . , an > and < b1, b2, . . . , bn >, reduce
to smaller sequences as follows: remove a1 and b1x from the se-
quences. Reduce the a1 elements bi (i ≥ 2) by one, and the b1

highest elements of ai (i ≥ 2) by one. Recursively determine if
these sequences are digraphic. If the new pair is digraphic, we
can extend the graph by adding a new vertex v1, and make out-
edges from v1 to the a1 vertices whose vertices whose in-degree is
bi−1, and in-edges from the b1 vertices whose out-degree is ai−1.
Clearly, this new digraph has the required in- and out-degrees.

If the reduced pair of sequences is not digraph, the original pair
is not digraph either. The argument is similar to the one for the
original method. The key statement to prove is: If there exists
a digraph with the required in- and out-degrees, then there also
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exists a digraph with the required in- and out-degrees, AND so
that v1 has as out-neighbours the a1 vertices of highest in-degree,
and as in-neighbours the b1 vertices with highest out-degree. The
argument is that any graph can be transformed using 2-switches so
that the extra property holds and the out- and in-degrees remain
the same. 2 points.

(b) Use your method to determine whether the pair of sequences
< 3, 1, 1, 0 > and < 1, 1, 1, 2 > is digraphic. Show your work.

Reduce to the pair < 0, 1, 0 > and < 0, 0, 1 >. Obviously, this
pair can be realized by forming a graph with vertices v2, v3, v4

with one edge from v3 to v4. Now add a vertex v1 with out-edges
to v2, v3, v4, and in-edges from v2. 1 point

(1.2.2) What is the maximum possible number of edges in a simple bipartite
graph on m vertices? (Explain your answer)

The maximum number of edges in a bipartite graph is achieved by a
complete bipartite graph. The number of edges in a complete bipartite
graph Ka,b equals ab. If there are a total of m vertices, then we need to
maximize ab, subject to the condition that a+b = m. It is a fairly easy
calculus problem that the maximum is achieved when a = b = m/2,
which gives m2/4 edges. If m is even, this works; if m is even, the best
we can do is a = (m − 1)/2, b = (m + 1)/2, which gives (m2 − 1)/4
edges. 2 points.

(1.2.28) Show that every simple graph is an intersection graph by describing (in
general) how to construct a family of sets which it represents.

Let G = (V, E) be any simple graph. Then for each vertex v, form
the set Sv containing all edges of which v is an endpoint. Then G is
the intersection graph of the Sv: if vertices u and v are adjacent, then
both sets Su and Sv contain the edge {u, v}, and thus Su ∩ Sv 6= ∅.
Conversely, if Su ∩ Sv 6= ∅, then there must be an edge e ∈ Su ∩ Sv.
Since e ∈ Su, u must be an endpoint of e. Since e ∈ Sv, v must also be
an endpoint of e. So e must be the edge {u, v}, and u and v must be
adjacent. So for any pair of vertices u and v, u and v are adjacent in
G if and only if Su ∩ Sv 6= ∅. Bonus 2 points

(1.4.21–24) Determine the diameter, radius, and central vertices of the following
graphs: 3 points
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(a) Path graph Pn. Diameter n, radius d(n − 1)/2e, central vertices
the (n + 1)/2-th vertex if n is odd, the n/2-th and n/2 + 1-th
vertex if n is even.

(b) Cycle graph Cn. Diameter equals radius: bn/2c. Central vertices:
all.

(c) Complete graph Kn. Diameter equals radius: 1. Central vertices:
all.

(d) Complete bipartite graph Kn,m. If n and m both greater than 1,
then diameter equals radius equals 2, all vertices are central. If
n = 1 and m > 1 or vice versa, then diameter equals 2, radius
equals 1, central vertex is the vertex on the bipartite side of size
1. If n = m = 1, then the graph is isomorphic to K2, see d.

(e) Petersen graph. Diameter equals radius equals 2. Central vertices:
all.
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