
MATH 3330 — Applied Graph Theory
Assignment 5 – Solutions

1. Do problem 4.3.7 of the text (find a shortest-path tree for the given
graph).

Here is the tree, in parent notation, and the distance from each vertex
to s

s a b c d e f g
- c c s e c c f
0 7 9 5 14 13 10 12

Show your work

Below are shown all frontier edges in order they are discovered. The
first vertex listed is the endpoint that is in the tree. In the second
column, the value of w(e) + dist(u) is shown for each frontier edge e,
where u is the endpoint of e in VT . In the third column, the order in
which edges are added to ET is shown. A mark − means that the edge
was not a frontier edge anymore when it was considered. 2 points.

Edge w(e) + dist(u) Order added
sa 7 -
sb 9 -
sc 5 1
ca 7 2
cb 9 3
ce 13 6
cf 10 4
af 11 -
be 15
bd 15
fe 13 -
fg 12 5
gd 19
ge 16
ed 14 7

2. Show that, when the Dijkstra algorithm is applied to a graph where all
edges have the same weight, the result is a BFS tree.

1



Assume without loss of generality that all edges have weight 1. Both
Dijkstra’s and BFS are based on the same essential tree-growing algo-
rithm. The only difference is in choosing the next frontier edge to add.
For Dijkstra’s the criterium is: add the frontier edge e = uv, where u
is the vertex already in VT , that minimizes w(e) + dist(u), where w(e)
is the weight of edge e, and dist(u) is the distance from u to the root.
Since all edge weights are 1, dist(u) equals the graph distance from u
to the root to u, and w(e) = 1 is the same for all edges. Therefore,
the frontier edge added is one that minimizes the graph distance of its
endpoint to the root. This also holds for bfs: vertices that are closer
to the root are added first to the queue, and its adjacent edges there-
fore have preference. Since both algorithms in this case have the same
criterium for selecting frontier edges, they will give the same tree. 2
points. Note: full marks only if your answer includes some argument
about the selection criterium.

3. Problem 4.2.15. Characterize the graphs for which the BFS and DFS
trees are identical, no matter what the ”tie-breaking” priority or the
starting vertex are.

Trees. Reason: Consider the DFS tree. If there are any edges in the tree
that are not part of the graph then they must be ”shortcuts” between
a vertex and one of its ancestors. But if this same tree is also a BFS
tree, then the path through the tree is a shortest path. So no shortcuts
are possible. Therefore, there are no edges except those in the tree,
and thus the graph itself is a tree. 1 point.

4. (Variation of problem 4.3.9) Similarly to the problem from assignment
3, where MST was applied to finding the most reliable spanning tree, we
can use the shortest path principle to find the most reliable connection
in a network to a given vertex. Precisely, given a graph (network), and
failure probabilities pij, find the most reliable path between two given
nodes s and t.

The most reliable path is that for which the probability of non-failure
is highest. That is, the path for which the product, over all edges ij of
the path, of (1−pij) is highest. By taking the logarithm in the negative,
we can see that this is the path for which the sum of − log(1 − pij) is
lowest. Thus by taking − log (1 − pij) as weights of the edges, we can
turn this into a shortest path problem.

2



Show how to modify Dijkstra’s algorithm to solve this problem (give
details and justification). Illustrate your method on the graph given in
4.3.9.

First of all, dist(u) is now the negative log of the reliability of the
path from the root to u (the product of 1 − pij over all edges of the
path). Let rel(u) denote the relibility of the path from the root to u
(so dist(u) = − log rel(u)). The criterium of Dijkstra’s for choosing
the next frontier edge to be added is to add the edge that minimizes
w(e) + dist(u). Considering again that the weigths are negative log-
arithms, this is equivalent to choosing the frontier edge uv, where u
is the endpoint that is part of the tree, for which (1 − puv) · rel(u) is
maximized. 2 points

5. Find a dfs-tree of the graph shown in 2.4.9. Compute the df numbers
and ”low” numbers (see class notes and Section 4.4) for each vertex,
and use this to find all cut vertices of the graph.

Your answer will depend on the vertex you started with. This answer
is for root a, and used alphabetic ordering to resolve ties.

Vertex a b c d s t u v x y z
Parent - a d c z s c u v x x
Df-number 0 1 3 2 9 10 4 5 6 7 8
low-number 0 0 1 0 9 10 1 5 6 5 8

The root a has only one child, so is not a cut vertex. The vertices
that have df-number equal to the low number are a, s, t, v, x, z. The
cut vertices are precisely the parents of these vertices in the df tree,
which are z, s, u, v, x. 1 point

6. True or false: the diameter of a graph is the maximum depth of a dfs
tree of the graph.

False. Diameter is about shortest paths. Counterexample: the com-
plete graph. Any dfs tree will be a path, but diameter is one. 1 point

7. Follow the link given on the course Web page labelled ”wire routing”.
The given applet finds a path from a start square to finish square in a
grid with blockages. The graph it represents is as follows: the squares
are its vertices, and edges correspond to adjacent squares. The applet

3



uses one of the tree-growing algorithms discussed in class. Which one?
Explain your answer.

BFS. At each iteration, the algorithm adds all frontier edges. This
means it uses a queue-type structure, and ends up with a bfs tree.
Note that it therefore also finds the shortest path from start to finish
square. 1 point

4


