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Local Vertex Information

(i) the set of local contacts among all nodes
(i.e. the underlying grid structure)

(i1) the location, on the lattice, of the target (1)

De-centralized Algorithm

A in each step, the current message-holder (u)
chooses a contact that is as close to the target (t) as
possible, in the sense of lattice distance.




Watts & Strogatz Model

Watts-Strogatz model N=20, K=4, B=0.2




Kleinberg Model

G(n,p,q,r)
Distance between verticeies:  d((,7), (k,€)) = [k —i[ + ¢ — j|.
Probability of long links:  [a@wm1™
Normalizing Factor:  X.[d(u,v)]™
Inverse r-th power distribution
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Kleinburg’'s Theorems

Theorem 1 There is a constant %depending on p and g, but
independent of n, so that when r= 0, the expected delivery timg of
any decentralized algorithm is at least (Hence exponential i‘ﬁﬂfhe
expected minimum path length.)

Theorem 2 There is a decentralized algorithm  add a constant
, independett of n, so that when r=2and p=qg=1, the expected
deI|very time of is at most : a(logn)?

Theorem 3 (a) Let 0 <7 <®hereis aconstant |, depending on
p, g, r, but independent of n, so that the expected delivery time of
any decent(rallﬁed algorithm is at least :

QT
(b) Let r> 2. There is a constant , depending on p, g, r, but
independent of n, so that the expected delivery time of any

decentralized algorithm is at least anr=D/6=1)




r =2 is the only value for which there is a decentralized
algorithm capable of producing chains whose length is a
polynomial in (log n)

lower bound T
on delivery time
(given as log T)

clustering exponent r




K-Dimensions

e r=k

e Kk-th inverse distribution for (log n) in polynomial time




