
Combinatorics – Problem set 4
Due Thursday, Feb. 12, beginning of class

Write a careful argument to prove your answer. Be precise. Define every
induction argument formally, and state the induction hypothesis explicitly.
Make your argument as short as possible, but no shorter. Unmarked problems
should be done by all students. Problems marked with a course number (e.g.
MATH 4370) should be done by students enrolled in that course only.

1. Consider Füredi’s theorem which gives a lower bound on the size of a
maximal intersecting family (presented in class Feb. 4, also see Jukna,
Theorem 8.4. The bound obtained from the counting argument is that

|F| ≥
(
n
k

)
1 +

(
n−1
k−1

) .
(a) This bound works for all values of k and n, not just for n ≤

k2/2 log k. Show, by giving some examples, that the bound is not
useful for small values of k.

(b) Fill in the details of the argument that the lower bound, with the
condition that n ≤ k2/(1 + 2 log k), implies that |F| > k2. (My
derivation in class had one small error in the first step; see also
Jukna’s proof).

2. Give lower and upper bounds for the Ramsey numbers R(4, 3) and
R(4, 4). You can use the bound shown in class, but you may improve
on it by giving your own argument. Note that R(5, 5) is still unknown!

3. Consider the proof of Dilworth’ theorem given in the notes. Give a
detailed proof of the following facts, used in the proof.

(a) Every maximal chain in a poset P contains a maximal and a min-
imal element of P . (See notes for definitions.)

(b) Explain the sentence “If every antichain in P \C contains at most
M − 1 elements, we are done.”

(c) Give the argument why each of the M chains in S− contains ex-
actly one of the elements αi as maximal element



4. Given a sequence of distinct real numbers {ai}ni=1. Define the following
partial order on [n]: i ≺ j precisely when i = j, or i < j and ai < aj.

(a) Show that ≺ is a partial order.

(b) Show that a chain corresponds to an increasing subsequence. What
does an antichain correspond to? Justify you answer.

(c) Use Dilworth’ theorem to show that, if n = rs + 1, then any se-
quence of n distinct numbers either has an increasing subsequence
of length r, or a decreasing sequence of length s. (We saw a direct
proof of this in class.)

5. Show that the bound in the Erdős-Szekeres is best possible. Precisely,
give a sequence of n = rs distinct numbers which does not have an
increasing sequence of length r or a decreasing sequence of length s.

6. Show that every set of n + 1 elements chosen from the set [2n] must
contain a pair of integers whose sum is 2n+ 1.

7. [4370] Given a poset P , an upper bound of two elements a, b ∈ P is
an element c so that a ≺ c and b ≺ c. This element c is a least upper
bound if, for any other upper bound d of a and b, c ≺ d. Similarly, we
can define lower bound and greatest lower bound. A lattice is a poset
where each pair of elements has a greatest lower bound and least upper
bound.

(a) Show that, if a pair of elements has a least upper bound, then it
is unique.

(b) Show that a lattice P has a unique greatest element, i.e. an ele-
ment M so that a ≺M for all a ∈ P .

8. [5370] Prove the following: if n > srp, then any sequence of n real
numbers must contain either a strictly increasing sequence of length s,
a strictly decreasing sequence of length r, or a constant subsequence of
length p.


