Algorithms for Finding Dense Components in a Graph

Richard Hoshino

In this talk, we will study the problem of finding highly connected
subgraphs of some large graph G.

To do this, we will define the density of a graph, and discuss
algorithms that will determine the exact value of this density.

We are interested in measuring the density of a graph so that we
can quantify this notion of “highly connectedness”. This is especially
useful when we apply this concept to analyze sparse graphs such as

the Web Graph and the Citation Graph.

In this talk, we will only examine undirected graphs. However,
the same ideas and techniques can be used to find the density of
any directed graph. (Note: both the Web Graph and the Citation
Graph are directed graphs). The following paper discusses this in
great detail.

Reference: Greedy Approrimation Algorithms for Finding
Dense Components in a Graph, by Moses Charikar of Stanford
University.

Let G(V, E) be an undirected graph, where V' are the vertices of
G, and E are the edges of G.

Let S C V. We define E(.S) to be the edges induced by .S, namely

ES)={ijeE:ie S, je S}

E(S
We define the density of the subset S to be f(S) = ‘](S\”

And we define the density of the undirected graph G(V, E) to be
F(G) = max{ f(5)}.

Note that the average degree of the subgraph induced by S is just
2f(5).

As a warmup, let’s find the density of each of the following graphs:

How can we devise an algorithm that will calculate f(G), or at

)

least return a value close to f(G)?
It makes sense to try to remove vertices of low degree.

So here is a greedy algorithm based on this idea:

(1) Let S:=V. (e, let S be all the vertices of G).
(2) Calculate the value of f(.5).

(3) Identify 4., the vertex of minimum degree in the subgraph

induced by S.

(4) Remove 7, from the set S, and go back to step 2. Continue
until .S is empty.

Let’s use Maple to see how this algorithm works on the following
graph:

[t turns out that this algorithm is reasonably efficient, that it gives
a two-approximation for f(G).

In other words, if v is the highest value of f(.5) obtained during
the algorithm, then v < f(G) < 2w.

Theorem: this greedy algorithm is a 2-approximation for f(G).

Proof: The left side of the inequality follows immediately by
writing the problem as a linear program, and considering its dual.
But before we do that, we need to discuss what a linear program is.

Once we do that, we will prove that the exact value of f(G) can
always be computed, using linear programming.

Here is an example of a linear program.

maximize 4x; 4+ 10x9 4 623
2x1 + 4xo + 23 < 12

6x1 + 229 + 23 < 20

bx1 + 19 + 223 < &0

1 > 0,29 > 0,23 > 0

There are well-known techniques for solving linear programming
problems, using a technique known as the simplex method.

Thus, let’s attempt to turn our problem of finding f(G) into a
linear programming problem.

Let the vertices of G be vy, v, ..., vy.

Pick an arbitrary subset S. Here is another way to express f(.5).
We do the following;:

For each vertex v;, we let

yy=1ifvy; €S and 1y =0ifv; ¢ S.

And for each edge e;;, we let

Tij = 1 if €ij € E(S) and Tij = 0 if €ij ¢ E(S)

Since |E(S)| = Y. zjj, and |S| = X yi, we conclude that

el eV

ZZCZ'j

fl8) =220

Here is an example.

Note that if:
If y =1and y; = 1, then z;; = 1.

If y; =1 and y; = 0, then z;; = 0.
If y; = 0 and y; = 1, then z;; = 0.

If y; = 0 and y; = 0, then z;; = 0.

So in all cases, notice that x;; < y; and x;; < y;.

Note: any pair of 0 — 1 wvectors x and y satisfying these in-
equalities corresponds to a possible pair of sets, S and E(S).

Thus, we wish to find the maximum value of

> Tij

fl8) =222

Given that

1. Bach z;; and each y; is either 0 or 1.

2. z;; < y; and x;; < y; for each pair of adjacent vertices ¢z and j.

Note that we can calculate f(S) for every set S. And so by our

definition, the density of our graph, f(G), is the maximum value of
f(S), over all possible subsets S C V.

Okay, now we're getting closer. However, having the > w; in
eV
the denominator looks terrible, so let’s normalize this optimization
function.

So we set > y; = 1.
eS8
By doing this, we must now change the z;;’s, because we have
x;; < y; and x;; < y; for each edge e;;. So now the vectors x and y
are no longer 0 — 1 vectors.

However, we have now turned our problem of finding f(G) to a
nice linear program:

maximize Y Tjj
ij€E
Vei; xij <y
Vei; wij <y
>y <1
eV
Veij,vi i,y > 0

Note: in order for us to use the simplex method, we require

>~ vy; < 1. However, clearly the optimal valueof . x;; when > y; = 1.
eV ijek eV

Recall that when we applied our greedy algorithm on the following

graph, Maple returned the incorrect value of T rather than the

9

correct value of =

)

Let’s see what happens when we try to find f(G) using this linear
programming method.

Now we prove that the linear program does in fact give an output

of f(G), the density of G.

Lemma 1: For any S C V, the value of this linear program is
at least f(.9).

Lemma 2: Given a feasible solution of this linear program, with
value v, we can construct a set S C V such that f(5) > v.

Putting Lemmas 1 and 2 together, we have proven that the optimal
value of the linear program is equal to f(G), the density of the graph

G.

How can we extend this to directed graphs?

Let G(V, E) be an directed graph, where V' are the vertices of G,
and E are the edges of G.

Let S;T C V. We define E(S,T) to be the set of edges going
from S to T', namely

ES,T)={ijeF:i€S,jeT}

In the case of the web graph, S corresponds to the hubs and T'
corresponds to the authorities.

We define the density of the pair of sets .S, T to be

ss.1) - [EG.D)
s

And we define the density of the directed graph G(V, E) to be
d(G) = max {d(S,T)}.

(Note: the sets S and T do not have to be disjoint).

We can compute an exact algorithm for determining d(G) using
the same linear programming methods we discussed for finding f(G).

The Dual Problem

There is a beautiful method of solving a linear programming prob-
lem: one can solve it by examining the dual problem.

Let’s go back to this example.

For this example, we wished to

maximize X2 + Tog + T34 + T14 + To4
1o < Y1, T12 S Yo

Loz < Y2, T3 < Y3

T34 < Y3, T34 S Y4

T4 S Y1, T4 S Yy

Tog < Y2, T2 < Yy

Nty t+ys+ys <1

T12, T23, T34, T14, T4 => 0

Y1, Y2, Y3, Y4 Z 0

Let’s write this as a matrix.

We wish to maximize

X12

Ta3
L34
L14
T4

Y1

Y2

Ys

Y4

(111110000)-

OO O O O oo o o o

<
8

)
N
S

<t
[y
)

=
S

<t
N
8

—
N

™
NN

e
=

=y
™

0

0
0
—1
0
0
0
—1
0
0
0
1

10000 -1 0
01000 O
00100 O

—1
0

0
0

000101 0
00001 O

—1
—1
0
0
0

0
1

0
0

10000 O
01000 O
00100 O
00010 O

00001 O

00000 1

such that

with x19, 293, T34, T14, To4, Y1, Y2, Y3, Ys > 0

Primal Problem:

Dual Problem:

maximize z = clz

Ax <b
x>0

minimize z = bl w
Alw > ¢
x>0

So in our example, we have,

O OO O =

L2
Ta3
L34
T14
o4 |, b —
(7
Y2
Y3
Y4

_ O O O O O o o o oo

P12
b23
D34
P14
D24
qi12
423
d34
d14
q24

So the corresponding dual problem is:

Minimize z = bfw = t such that

10 0 0o 0 1 0 0 0 00
c 1 o0 o0 0 0 1 0 0 0 0
c o 1 o0 0 0 0 1 0 00
c o o 1 0 0 0 0 1 00
c o o o 1 0 0 0 0 10
-10 0 -1.0 0 0 0 0 0 1
o -10 0 -1-1 0 0 0 01
o o0 -10 0 0 -1 0 0 0 1
o o o o o0 0 0 -1 —-1-11

And this is equivalent to:

minimize t
P2+ q2 =1
P23+ qo3 > 1
P3at+qs =1
pratqua=>1
Pas+ Goa = 1

t > pro+pu

t 2 paz + pas + Q12
t 2 p3a+ Qo3

t 2 g3+ qua+ qu
D125 P23, D345 P14 P24, 4125 4235 434, G145 G24, L = 0.

P12
p23
P34
P14
P24
qi12
423
d34
d14
q24

1V

O O O O = s

Solving this in Maple, we get the minimum value being ¢ = 1

And this is clearly the density of the graph G.

We know that the optimal value of the dual problem is the same
as the optimal value of the primal problem, and this is confirmed in
this example.

Future Work:

In the definition of density d(G) for directed graphs, the sets S
and T" were not required to be disjoint. So let’s ask this question:

We can devise an algorithm to find the value of d'(G), where
we maximize d(S,T') over disjoint sets S and T. What would be
complexity of this algorithm?

Using flow techniques, we can find an algorithm for computing
f(G) exactly. However, no one knows of a flow-based algorithm for
computing the value of d(G). It would be interesting to see if this
can indeed be accomplished.

